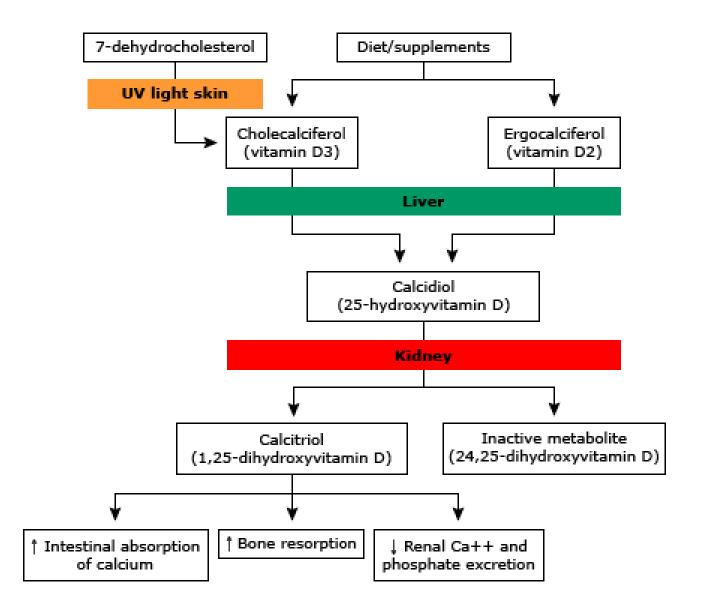
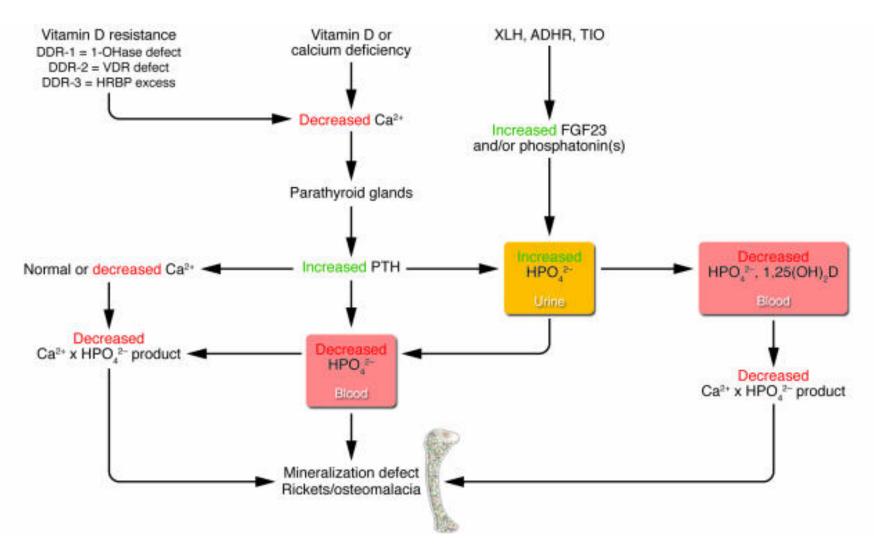
Debate on Vitamin D

Monique E. Cho, MD

Department of Nephrology and Hypertension


Overview

Background:

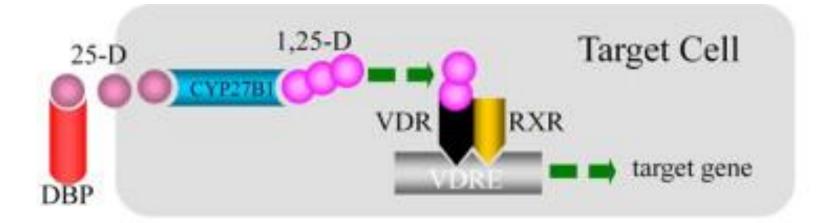

- Vitamin D metabolism
- Proposed mechanisms for extra-skeletal benefits
- Vitamin D in clinical outcomes and limits of available data (the discordance between observational studies and RCTs):
 - Caner
 - Cardiovascular
 - Diabetes
 - CKD

Vitamin D metabolism

Skeletal action of vitamin D

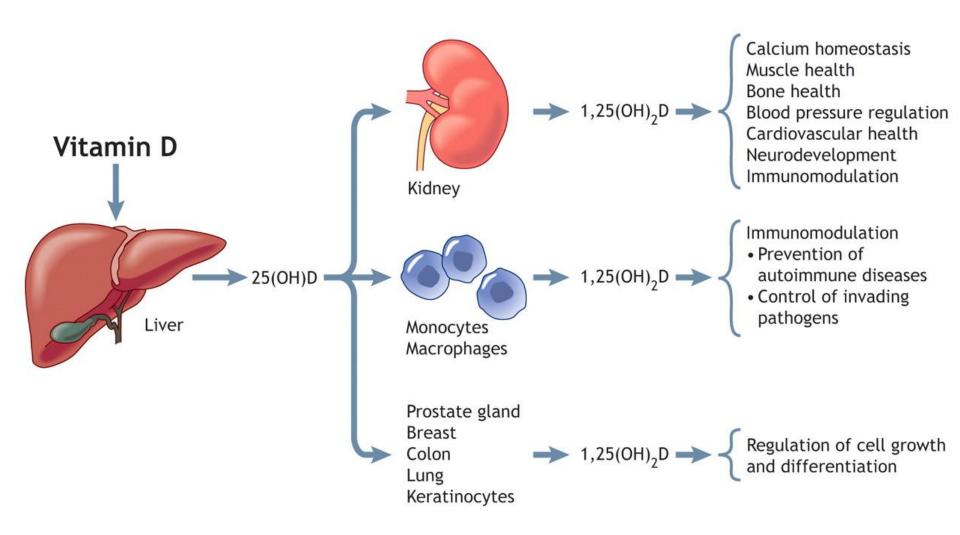
M.F. Holick, JCI 2006

Vitamin D

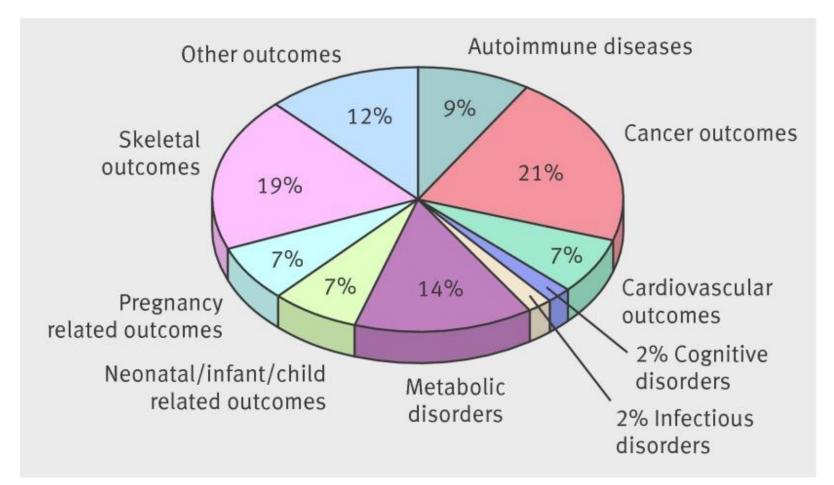

- Binds to nuclear VDR, resulting in direct or indirect regulation over a large number of genes:
 - 200-1250 (0.5-5% of total genome) genes have vit D response elements
 - Regulation over cellular proliferation/terminal differentiation, immunity, angiogenesis, insulin production, apoptosis, renin production.
- VDR present in most cells (including endothelial cells, pancreatic islet, neurons, T lymphocytes, cardiomyocytes, vascular smooth muscle and skeletal muscle, and hematopoietic cells)
- The local production of 1,25 (OH)2 D depends on circulating levels of 25 OH D.

Human cells co-expressing the CYP27B1-hydroxylase and vitamin D receptor

Macrophage	Enterocyte
Dendritic cell	Decidual stromal cell
Parathyroid cell	Fetal trophoblast
Osteoblast	Prostate epithelial cell
Osteoclast	Vascular endothelial cell
Keratinocyte	Pancreatic islet cell
Mammary epithelial cell	Renal tubular cell


Regulation of the extrarenal CYP27B1-hydroxylase

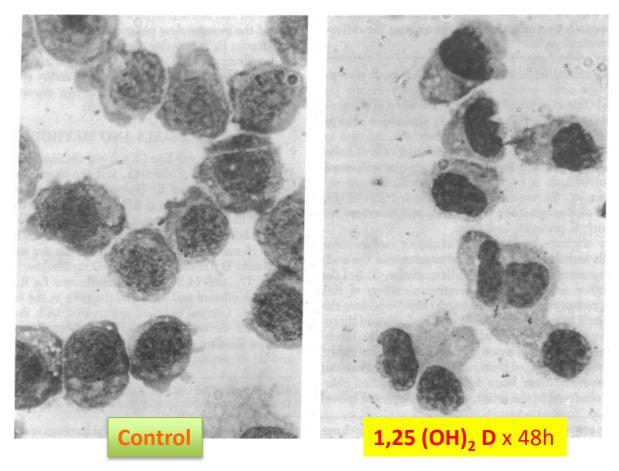
The local production of 1,25 (OH)2 D depends on circulating levels of 25 OH D.


<u>J Steroid Biochem & Molecular Biology</u> (2014)144:22

Effects of vitamin D

CMAJ (2006)174:1287-1290

Map of vitamin D related outcomes

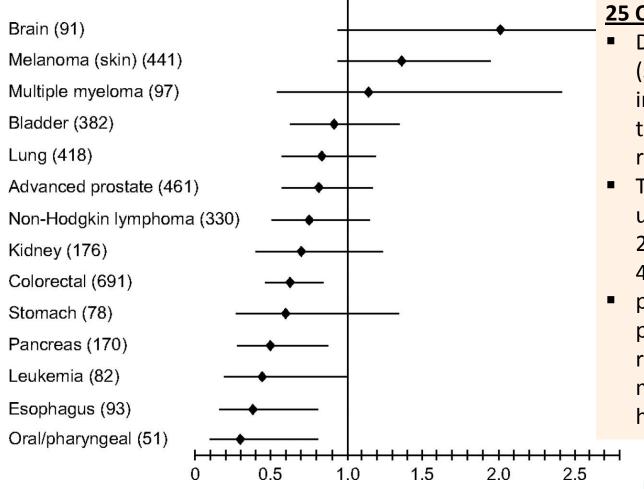


BMJ. 2014;348:g2035

Vitamin D and cancer

Vitamin D and immunology

Induction of monocytic differentiation by 1,25-dihydroxyvitamin D3 (human promyelocytic cell line)


PNAS 1983

Antineoplastic effects of Vitamin D

- Inhibition of proliferation and induction of differentiation:
 - 1,25-(OH)2D blocks the progression of cells from the G1 to the S phase of the cell cycle either directly or through the induction of other growth factors.
- Induction of apoptosis:
 - induces apoptosis in a number of tumor models, including carcinomas of the breast, colon, and prostate
 - Mechanism not fully elucidated
- Inhibition of angiogenesis and invasiveness
 - *Effect shown in vitro* and *in vivo* experimental models

RR for cancer for an increment of 25 nmol/L in predicted plasma 25-OH D level

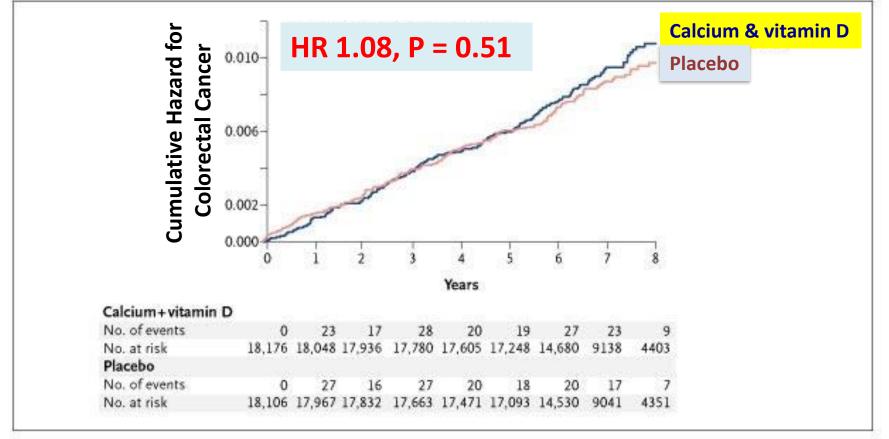
The Health Professional Study: N=51,529 men

25 OH D level available in 1095:

- Determinants of vit D level (sun exposure, skin color, BMI, intake, season, age) quantified through multiple linear regression model.
- The results from the model used to compute a predicted 25(OH)D level for each of 47, 800 men in the cohort.
- prospectively examined predicted 25 OH D level in relation to cancer risk with multivariable Cox proportional hazards models.

J Natl Cancer Inst (2006) 98:451

Prospective Study of 25 (OH) D3 level and cancer mortality in the US


Relative Risks for cancers according to baseline vitamin D levels in NHANES III Study, 1988-2000

Cancer	25 (OH) D (nmol/L)				
Site	<50	50-<80	80-<100	≥100	P trend
Lung	1.0	0.78	0.65	1.14	0.41
Breast	1.0	0.28			0.76
prostate	1.0	0.91			0.95
Lymphoma/leukemi a	1.0	1.34			0.96
Colorectal	1.0	0.44	0.28		0.02

J Natl Cancer Inst (2007) 99 (21): 1594

Vitamin D therapy does not reduce colorectal cancer risk

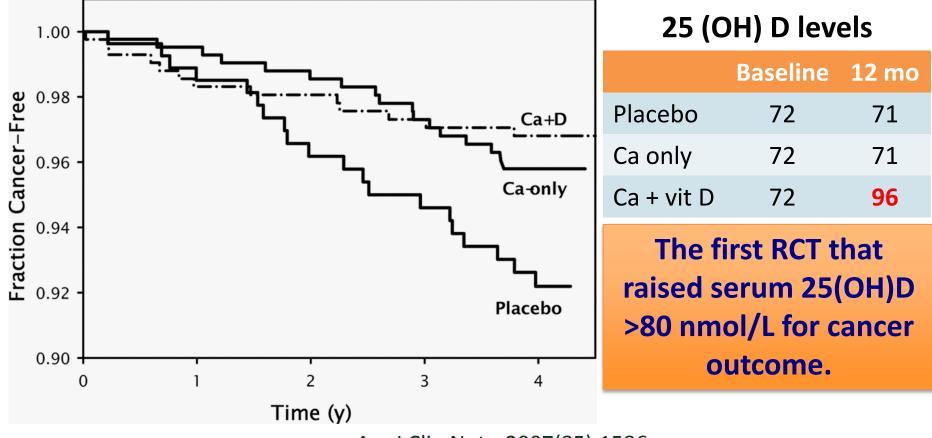
A RCT involving 36,282 postmenopausal women from 40 Women's Health Initiative centers (1000 mg of calcium + 400 IU D3)

Wactawski-Wende J et al. NEJM 2006;354:684

Colorectal Cancer risk according to the baseline 25-OH D Level a Nested Case– Control Study.

 Table 2. Odds Ratios for Invasive Colorectal Cancer According to the Quartile of Serum 25-Hydroxyvitamin D Level at Baseline and Treatment Groups in a Nested Case–Control Study.*

Baseline Serum 25-Hydroxyvitamin D	Main-Effect Odds Ratio (95% CI)†	Calcium + Vitamin D	Placebo	Intervention Odds Ratio (95% CI)‡
		No. with Color No. of C		
≥58.4 nmol/liter	1.00	33/48	27/45	1.15 (0.58-2.27)
42.4–58.3 nmol/liter	1.96 (1.18-3.24)	44/41	34/32	1.12 (0.59–2.12)
31.0–42.3 nmol/liter	1.95 (1.18-3.24)	35/32	45/41	0.99 (0.51-1.91)
<31.0 nmol/liter	2.53 (1.49-4.32)	46/39	42/28	0.75 (0.39-1.48)


* To convert values for 25-hydroxyvitamin D to nanograms per milliliter, multiply by 0.401. CI denotes confidence interval.
 † Odds ratios were derived from a logistic-regression model, conditioned on case-control pairs, estimating the main effect of the serum 25-hydroxyvitamin D level on the risk of invasive colorectal cancer (P for trend=0.02).

‡ P for interaction=0.54. The odds ratios were obtained from a logistic-regression model, conditioned on case-control pairs, and estimate the calcium with vitamin D intervention effect on the risk of colorectal cancer, according to serum 25-hydroxyvitamin D levels.

Wactawski-Wende J et al. N Engl J Med 2006;354:684

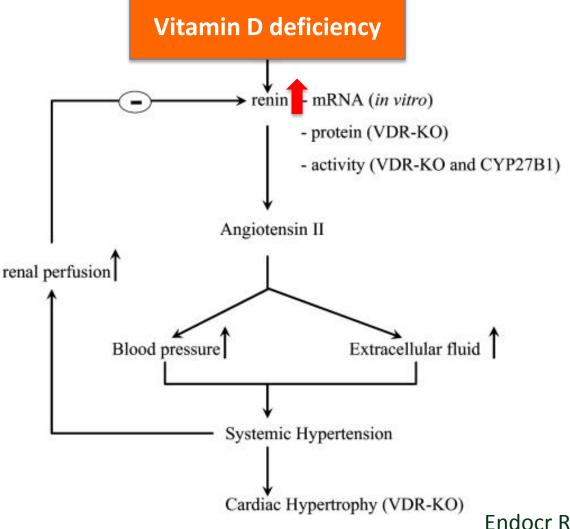
Vitamin D (higher dose) and calcium supplementation reduces cancer risk

RCT in 1179 healthy postmenopausal women in Nebraska (1500 mg Ca/1100 IU of D3)

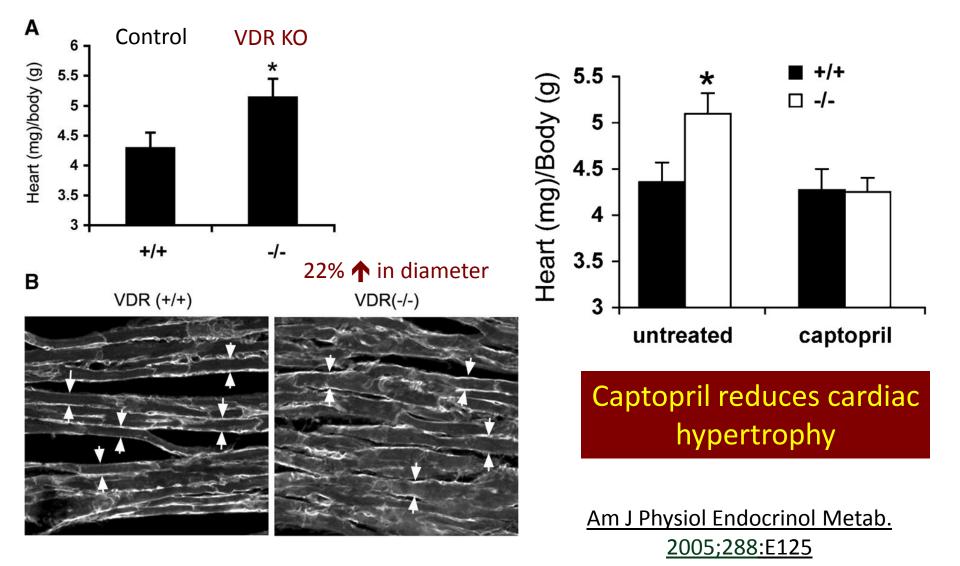
Am J Clin Nutr 2007(85):1586

Summary I: Vitamin D and cancer risk

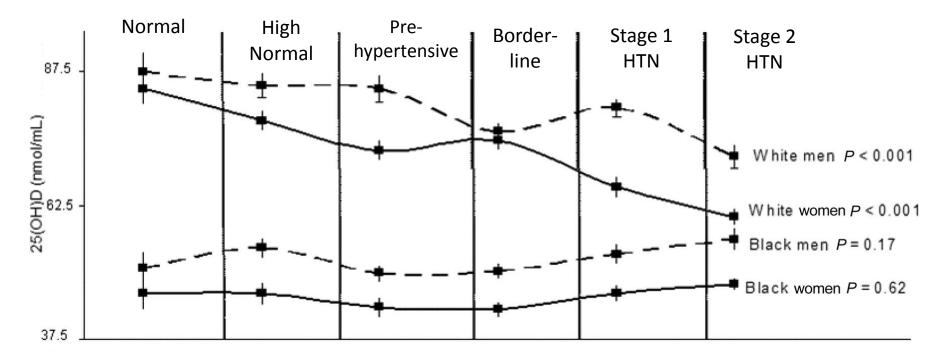
- In contrast to experimental and epidemiologic data, no clear evidence to show that D3 therapy significantly reduces cancer incidence overall from available RCTs and meta-analyses.
 - Available data favor for possible benefit at higher dose mostly for colorectal CA.
 - Breast and prostate CA with more variable results
- Questionable dose- or level-dependent benefit? (higher dose/D3 level need to be achieved for benefit?)
- Role of VDR agonist/1,25 (OH)2 D for cancer prevention unknown.


Vitamin D and the heart

Mechanisms by which vitamin D deficiency may confer cardiovascular

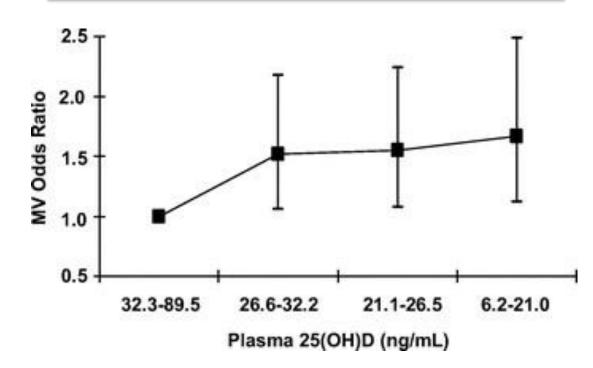

Al Mheid et al. BMJ 2013

Vitamin D deficiency stimulates Renin-Angiotensin System


Endocr Rev. 2008; 29: 726

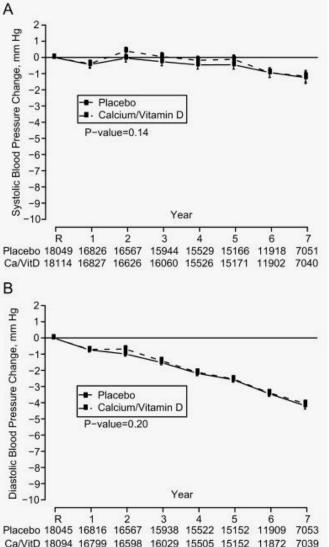
Vitamin D regulates renin biosynthesis

Optimal vitamin D status attenuates the ageassociated increase in systolic blood pressure in white Americans: a cross-sectional study


25(OH)D by SBP with the JNC 7 hypertension classifications among adults inNHANES III; 1988–1994

Am J Clin Nutr 2008(87) 136

25(OH)D levels are inversely and independently associated with the risk of developing hypertension: a prospective study


The Nurses' Health Study 2 (Nested case-control study): N=1484, ages 32-52, no baseline HTN

- Women in the lowest compared with highest quartile of plasma 25(OH)D had an adjusted odds ratio for incident hypertension of 1.66 (P for trend=0.01)
- Vit D deficiency (<30 ng/mL, 66%) with OR of 1.47

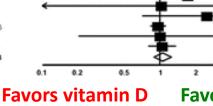
Hypertension 2008(52):828

Low-dose D3 therapy does not prevent or improve hypertension

The Women's Health Initiative:

- a RCT of 36,282 post-menopausal women – the largest study
- 1000 mg Ca + 400 IU of D3 daily versus placebo
- Over a median of 7 yrs of follow up, no difference in mean change over time in SBP and DBP between two groups.

Hypertension 2008 (52): 847

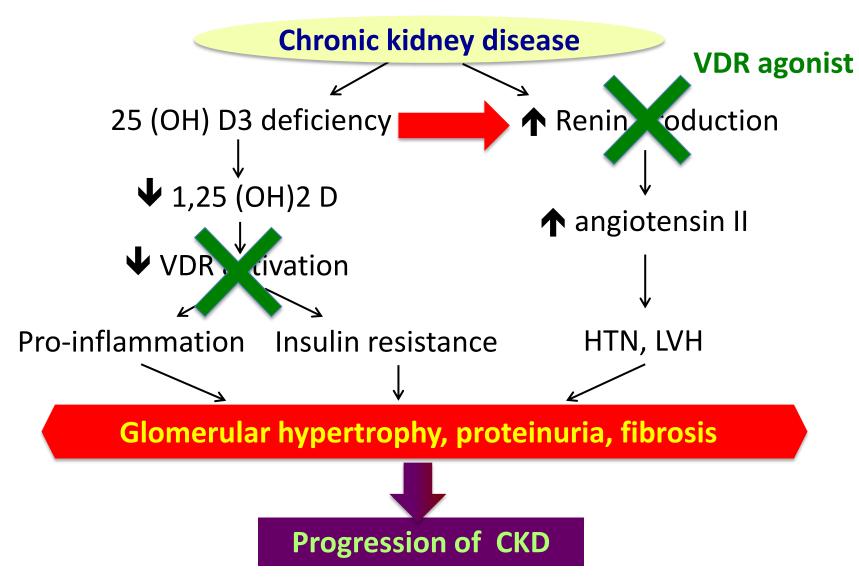

Summary II: D3 therapy is not associated with improvement in blood pressure in interventional trials

- The second largest interventional study (N=438) randomized to weekly D3 40,000 IU, 20,000 IU, or placebo: no change in BP in all groups despite increasing D3 levels from <30 to >50 ng/mL.
 - But only 1-yr follow up.
 - Had ongoing antihypertensive therapy.
- Only 2 RCTs performed for primary HTN prevention trial without any use of antihypertensive, but with again, mixed results and limited by very short follow ups (5-8 wks)
- Over 10 interventional studies show mostly no effect of D3 therapy on BP or incident HTN.

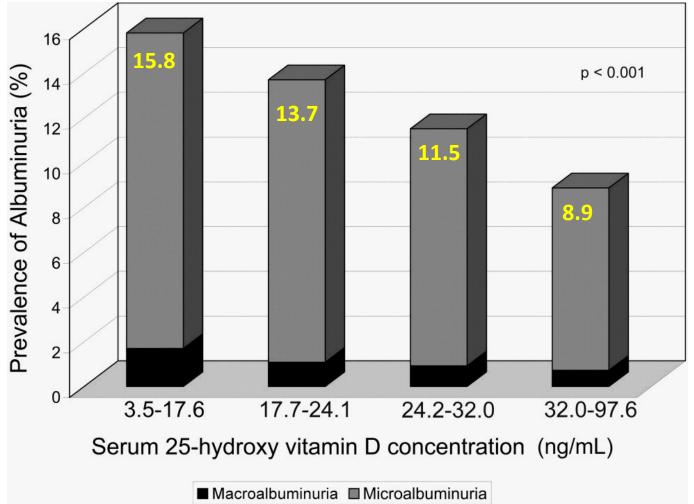
Vitamin D therapy in the setting of RCT does not improve mortality, MI, and stroke

RR and 95% CI Study name Relative Lower Upper Events / Total risk limit limit Vitamin D Control Avenell, 2004 0.35 0.02 5.50 1/99 1/35 Baeksgaard, 1998 0.32 0.01 7.79 0/65 1/63 Berggren, 2008 0.85 0.46 1.56 16/102 18/97 Björkman, 2008 1.38 0.68 2.73 27/150 9/68 Brazier, 2005 3.06 0.32 28.93 3/95 1/97 Broe, 2007 0.63 0.13 3.07 5/99 2/25 Brohult, 1973 3.00 0.13 70.30 1/25 0/25 2.50 13/104 Burleigh, 2007 1.27 0.64 16/101 10/195 Campbell, 2005 0.60 0.22 1,61 6/196 Chapuy, 2002 0.76 0.55 1.06 71/393 45/190 Chapuy, 1992 0.94 0.81 1.10 258/1634 274 / 1636 Mortality Flicker, 2005 0.89 0.68 1.16 76/313 85/312 Grant, 2005 0.99 0.83 1.18 217/1343 217 / 1332 Grove, 1981 3.23 0.14 72,46 1/12 0/13 Harwood, 2004 2.03 0.85 4.84 31/113 5/37 Inkovaara, 1983 1.31 0.45 3.80 7/45 5/42 Jackson, 2006 0.92 0.83 1.01 744 / 18176 807 / 18106 Komulainen, 1999 0.34 0.01 8.31 0/112 1/115 Krieg, 1999 1.01 0.62 1.64 21/7126/89 3.70 12.92 Latham, 2003 1.06 11/121 3/122 Lips, 1996 0.89 0.75 1.04 223/1291 251/1287 Lyons 2007 0.99 0.93 1.05 947 / 1725 953/1715 Meier, 2004 0.28 0.01 6.58 0/30 1/25 Meyer, 2002 1.05 0.87 1.26 169/569 163/575 Porthouse, 2005 1.26 0.90 1.79 57 / 1321 68/1993 Prince, 2008 0.33 0.01 8.12 0/151 1/151 Sanders, 2010 47/1125 0.85 0.56 1.28 40/1131 Schleithoff, 2006 1.19 0.42 3.33 7/61 6/62 Trivedi, 2003 0.90 0.77 1,07 224/1345 247/1341 Wejse, 2009 1.19 0.72 1.95 30/187 24/178 Mortality-Pooled estimate 0.96 0.93 1.00 3209/31076 3284/31155 47/102 40/97 Berggren, 2008 1.12 0.81 1.53 Brazier, 2005 5.10 0.25 104.94 2/95 0/97 Jackson, 2006 1.05 0.92 1.20 411/18167 390 / 18106 M Komulainen, 1999 3.08 0.13 74.81 1/112 0/115 Prince, 2008 0.67 0.11 3.93 2/151 3/151 Trivedi, 2003 89.0 0.81 1.13 224/1345 233/1341 Myocardial Infraction-Pooled estimate 1.02 0.93 1.13 687 / 19972 666 / 19907 Berggren, 2008 1.71 0.97 3.02 27 / 102 15/97 Brazier, 2005 1.02 16.09 1/95 1/97 0.05 Stroke Inkovaara, 1983 2.49 8/45 3/42 0.71 8.76 377 / 18106 Jackson, 2006 0.96 0.83 1.10 362/18167 Prince, 2008 1.00 0.21 4.88 3/151 3/151 Trivedi, 2003 1.04 0.80 1.35 105/1345 101/1341 1.25 506 / 19905 Stroke-Pooled estimate 1.05 0.88 500 / 19834

J Clin Endocrinol Metab. 2011:96:1931

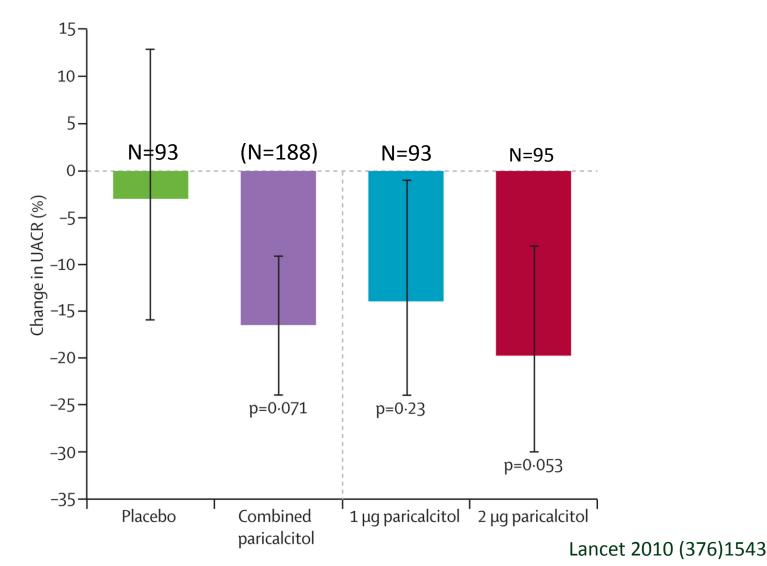


5 Favors control


10

Vitamin D and the kidney

Postulated mechanisms for the role of vitamin D in CKD progression



Increased prevalence of albuminuria with decreasing 25 OH D levels in NAHNES III (N=15,068)

AJKD 2007(50)69

Selective VDR activation with paricalcitol lowers albuminuria in patients with type 2 diabetes (VITAL study): a randomised controlled trial (24 wks)

VDR agonist reduces proteinuria

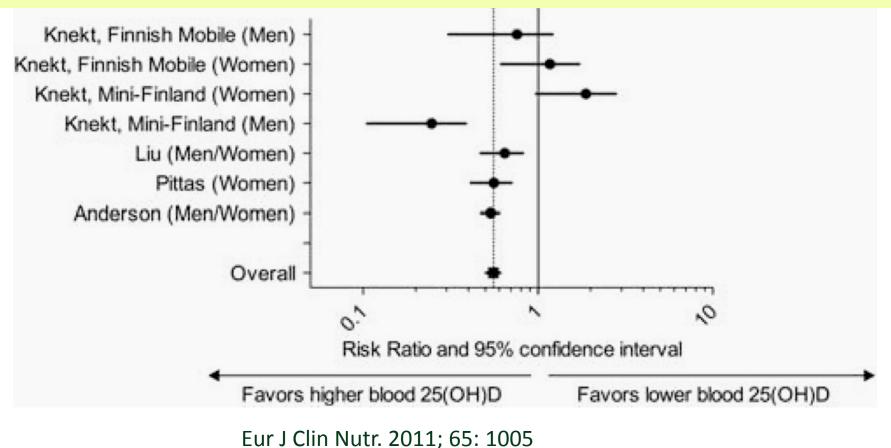
		Number of studies	Number of patients (vitamin D/control)	Mean difference (95% Cl)	Mean dif	ference	p for subgroup differences
Study drug	paricalcitol	3	264 / 171	16% (5 to 28%)			
Study drug	calcitriol	2	72 / 69	31% (14 to 48%)			0.16
	Calcinio	2	12105	5170 (14 10 40 70)			
Paricalcitol dose	1 ug/day	2	123 / 118	16% (3 to 28%)	•		0.00
	2 ug/day	2	141 / 141	17% (1 to 34%)	ě	•	0.86
Patient population	diabetic nephropathy only	2	230 / 133	20% (4 to 35%)			
	not (only) diabetic nephropathy	3	106 / 107	24% (8 to 40%)			0.69
Duration of follow-up	<24 weeks	2	77 / 75	24% (11 to 38%)		•	0.46
	≥ 24 weeks	3	259 / 165	17% (3 to 31%)	•		0.40
Study size	number of participants <80	3	57 / 54	24% (8 to 41%)			
,	number of participants ≥80	3	279 / 186	19% (7 to 31%)	•	•	0.61
	•					ro 100	
					-50 0	50 100	
					favours control	favours vitamin D	

J Am Soc Nephrol. 2013;24:1863

Vitamin D therapy does not improve cardiac structure in CKD

The PRIMO Study: A RCT in CKD patients (eGFR 15-60) with mild to moderate LVH and normal EF

Change in MRI measures from baseline to 48 wks				
	Placebo (n=91)	Paricalcitol (n=88)	Р	
LV mass	-0.07 (-0.6 to 0.4)	0.34 (-0.1 to 0.8)	0.15	
LV EF (%)	-0.54 (-2.1 to 0.1)	0.62 (-0.9 to 2.1)	0.18	
Thoracoabdominal aortic plaque volume (mL)	-0.03 (-0.03 to -0.02)	-0.02 (-0.03 to -0.02)	0.09	


>50% with diabetes and >30% with diabetic nephropathy

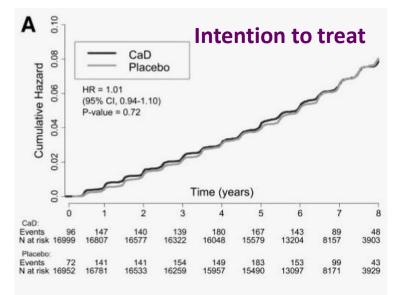
JAMA 2012;307:674

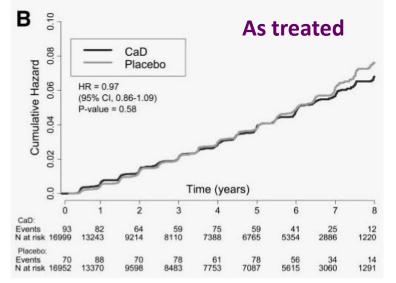
Vitamin D and diabetes

Observational studies suggest protective effect of D3 on diabetic risk

25(OH)D > 25 ng/ml: a 43% lower risk of developing type 2 diabetes compared to 25(OH)D < 14 ng/ml

Obesity and insufficient 25(OH)D interact to synergistically influence the risk of insulin resistance


NHANES 2001-2006 (N=12,900)

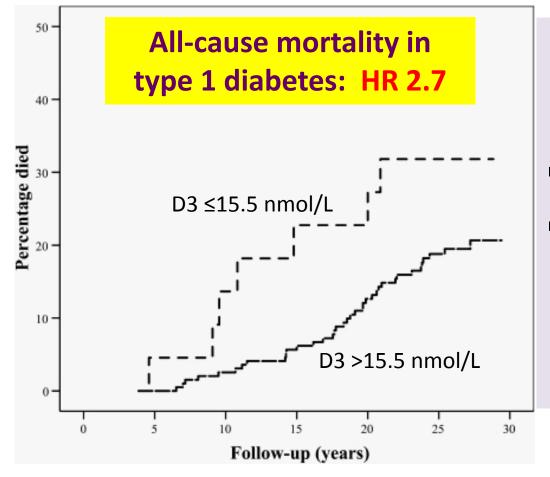

OR for type 2 diabetes in adults (≥20 yrs)

BMI category	25 (OH) D level (ng/mL)		
	<20	20-50	
normal	1.49	1.00	
overweight	2.89	1.63	
obese	6.78	3.97	

Diabetes Care. 2012; 35: 2048

Calcium + vitamin D3 therapy does not reduce the risk of incident diabetes

The Women's Health Initiative:

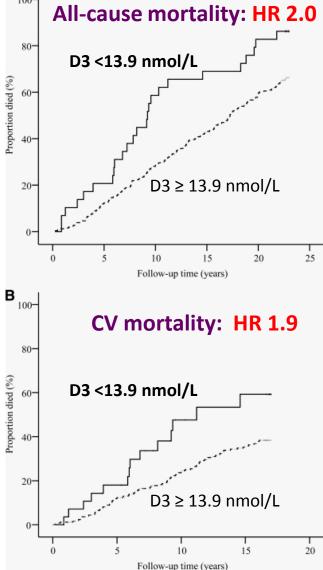

- A RCT of 33951 post-menopausal women
- D3 400 IU + 1000 mg Ca or placebo
- Median follow up of 7 yrs
- The dose too low?

Diabetes Care. 2008; 31: 701

RCT data of vitamin D and glycemic outcomes remain inconclusive

- 11 RCTs on effects of D2 or D3 on glycemia.
- Too heterogeneous for proper meta-analysis:
 Duration 6wks to 9 yrs
 - Dose 400 to 8600 IU/d to large infrequent pulse doses
- In RCTs, vitamin D therapy had:
 - No effect in participants with normal glycemia
 - Possible beneficial effects (reduced HOMA-R) among patients with glucose intolerance or insulin resistance at baseline.

Severe vitamin D deficiency independently predicts all-cause mortality in type 1 diabetes



<u>A prospective observational</u> <u>study (N=220) in incident</u> <u>type 1 diabetic patients:</u>

- A median f/u of 26 yrs
- Severe vitamin D deficiency at baseline did not predict the development of these microvascular complications.

Diabetes Care. 2011;34:1081

Very low vit D levels (<10th percentile) independently predict mortality in type 2 diabetes

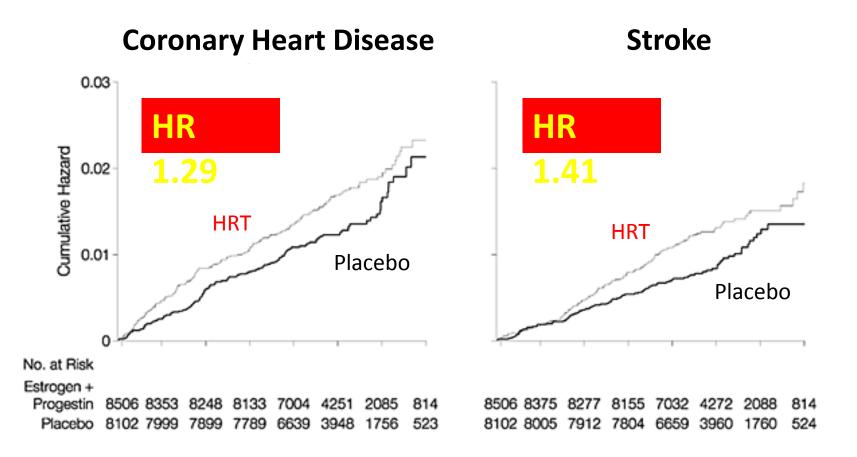
100-

<u>A longitudinal observational study</u> (N=289) in type 2 diabetes:

- A median 15- yr follow up
- 60% with normo-, 25% with micro-, 15% with macroalbuminuria.
- Mortality association independent of cardiac risk factors and renal function.
- Severe vitamin D deficiency at baseline did not predict progression to micro- or macroalbuminuria.

Diabetes Care 2010; 33(10): 2238

Summary I


- Preclinical, cross-sectional, and observational epidemiologic studies have suggested strong association between vitamin D deficiency and increased risk of cancer, autoimmune diseases, diabetes, HTN/CV diseases, and overall mortality.
- Randomized controlled studies have yielded much more variable results, in part due to significant differences in study design, dose, and duration.

Summary II:

- "Despite a few hundred systemic reviews and meta-analyses, highly convincing evidence of a clear role of vitamin D does not exist for any outcome, but association with a selection of outcomes are probable."
- The lack of concordance between observational studies and RCTs suggests that vitamin D is more likely to be a correlate marker of overall health and not causally involved in disease.

- Theodoratou et al. BMJ 2014

Observational study vs. RCT

JAMA. 2002;288:321

Summary of benefits of vitamin D concentration or supplementation

Probable	 Decreases dental caries in children Increases birth weight Increases PTH in CKD
Suggestive	 Decreases: colorectal cancer, non-vertebral fx, HTN, CVD prevalence, CVA, metabolic syndrome prevalence, and type 2 & gestational diabetes, overall mortality in older adults Increases: BMD in femoral neck, muscle strength, head circumference at birth

Theodoratou et al. BMJ 2014 & Chowdhury et al. BMJ 2014

Summary III: who should be screened in primary care?

- Caucasian and Asian women just before and any time after menopause, especially if they smoke or are thin.
- Women and older men with a family history of osteoporosis.
- Individuals who have had a hip, wrist, spine, or other fracture after age 50.
- Chronic steroid use.

Summary IV: Vitamin D therapy

- <u>Suggested target serum 25(OH)D levels:</u>
 - 20 and 40 ng/mL (50 to 100 nmol/L)
 - 30 and 50 ng/mL (75 to 125 nmol/L)
- Ergocalciferol vs. cholecalciferol:

	D2	D3
Source	Plant-derived	Sun exposure, fish
Potency (Δ in affinity to DBP or 25-hydroxylase)		>2-3x D2
Half life	1 d	12-30 d

 The dose and duration of supplementation remains unclear and need to be monitored for *the risk of hypercalcemia and nephrolithiasis*.