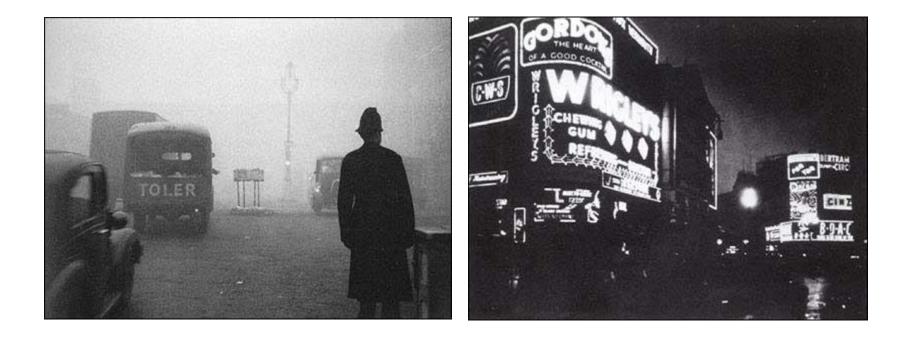
Air pollution and human health

Robert Paine, M.D. Pulmonary and Critical Care Medicine Spencer Fox Eccles School of Medicine University of Utah

Program for Air Quality, Health and Society

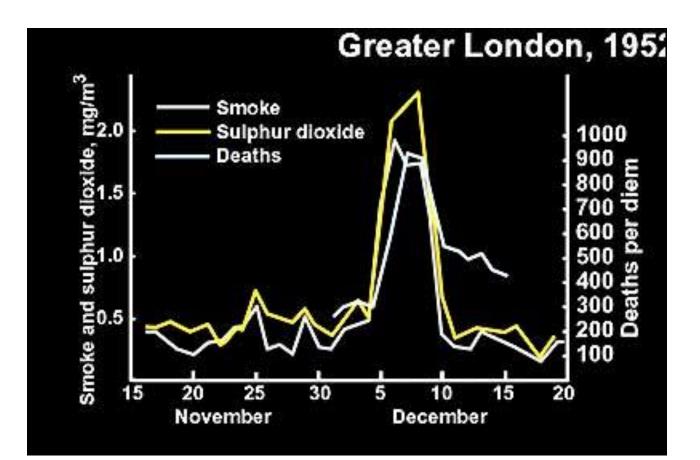
Disclosures

- Grant funding: NHLBI, Department of Veteran's Affairs
- Consultant, Partner Therapeutics, unrelated to the content of this presentation



Some questions

- Why do we care about air pollution?
 - How does air pollution affect health?
 - Does changing pollution levels lead to clinically important changes in human health?
- What do we know about biological responses to pollution? What organ systems are involved?
- What kinds of air pollution are important in Utah?
 - Where does it come from?
 - What are we doing about it?
- Relevance to COVID-19?


London, December 1952

SCHOOL PMEDICINE

London December 5-9, 1952

Program for Air Quality, Health and Society THE UNIVERSITY OF UTAH

UNIVERSITY OF UTABLE SCHOOL??MEDICINE

Worldwide causes of poor air quality

- Transportation
- Solid-fuel burning
- Power generation
- Municipal waste management
- Waste incineration
- Agricultural burning and wildfires
- Meteorology and topography

EPA defined "Criteria" pollutants

- Particulate matter
 PM_{2.5}
- Ozone
- Lead
- Carbon monoxide
- Sulfur oxides
- Nitrogen dioxide
- Air toxics

Program for Air Quality, Health and Society THE UNIVERSITY OF UTAH

PM_{2.5} - The Key Aerodynamic Diameter to Reach the Gas Exchange Portion of The Lung

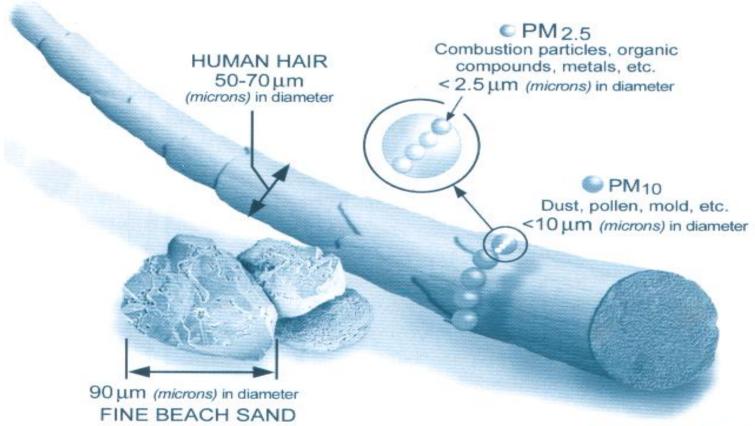
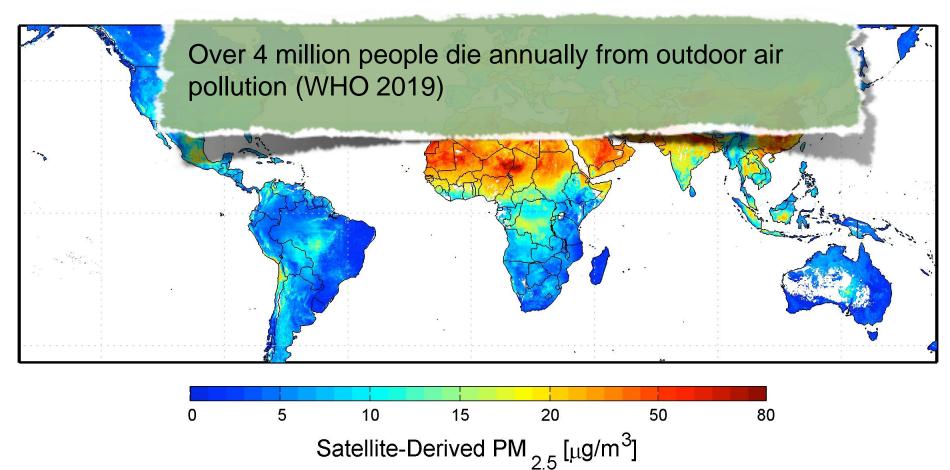



Image courtesy of the U.S. EPA

e Alu - co verestavevu aviju da Metjoon os

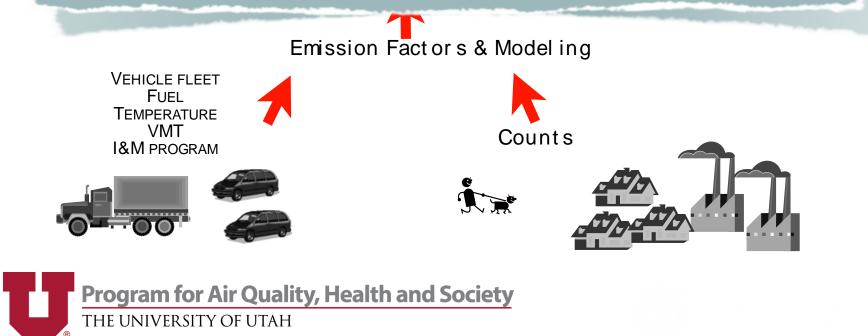
Global annual PM_{2.5} levels

Nasa.gov

UNIVERSITY OF UTABLE

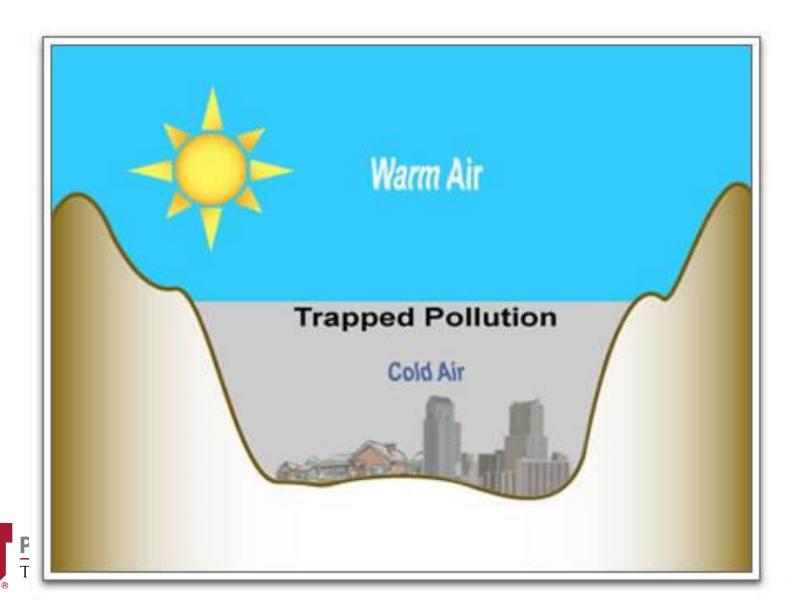
Program for Air Quality, Health and Society

UNIVERSITY OF UTABLE SCHOOL * MEDICINER

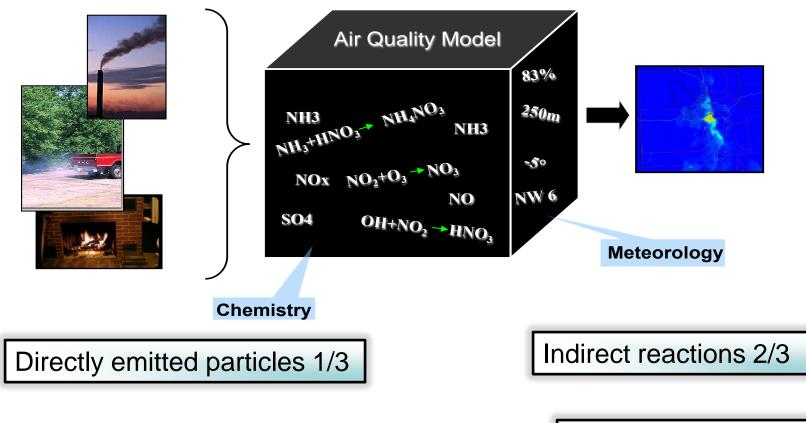

What are our Sources of Pollution?

Mobile sources responsible for 54% of emissions and are decreasing

Areas sources are responsible for about 33% of emissions and are increasing

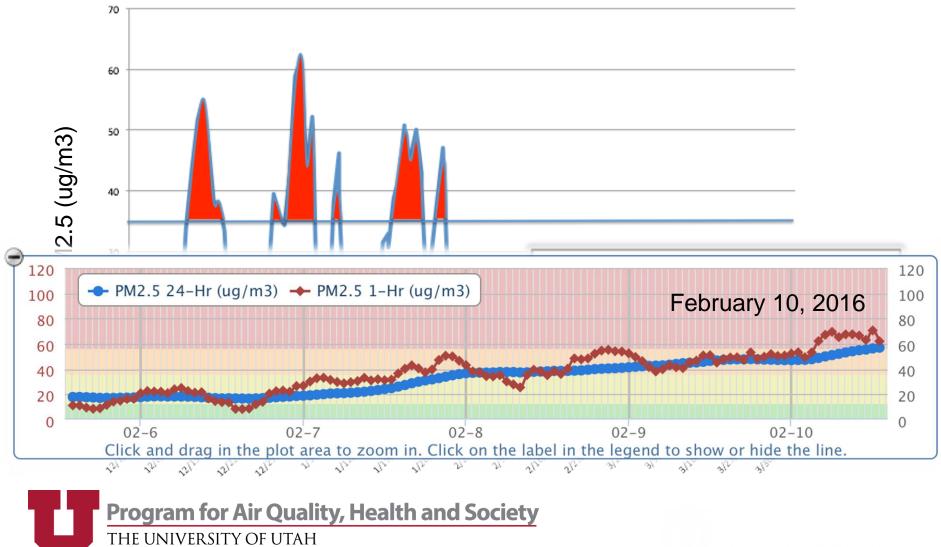

Point sources are responsible for about 12% of emissions and are increasing

Data for Salt Lake County from DAQ SIP website, September 16, 2018



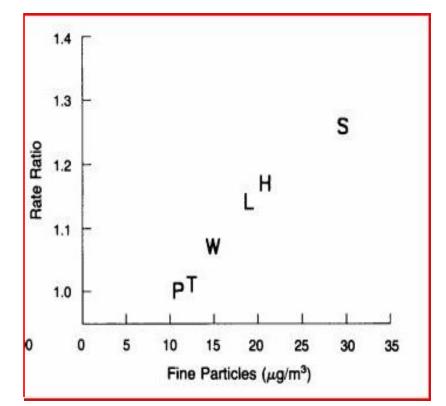
Wintertime inversions

Where does the PM come from?


Emissions

We contribute to both direct & indirect PM

Wintertime PM_{2.5} levels



Epidemiologic data concerning the impact of air pollution

- Extensive epidemiologic evidence linking exposure to air pollution to effects on human health
 - Total mortality/life expectancy
 - The Global Burden of Disease study estimated that pollution caused 9 million deaths in 2019, of which more than 60% were due to cardiovascular disease
 - Cardiovascular events (MI and ACS, strokes, sudden death)
 - Asthma
 - Worsening of symptoms for patients with COPD
 - Cancer

Correlation of mortality with air quality - Harvard Six Cities Study

- Prospective study with enrollment in 1979 and follow-up through 1990's
- City specific mortality during <u>early</u> ('80's) and <u>late</u> ('90's) periods and over <u>entire study</u>
- Mortality inversely related to level of fine particulates during each period
- Similar correlations both for overall mean exposure and for exposure in the year prior to death

S- Steubenville, H- Harriman, T- Topeka, W- Watertown, L- St Louis, P- Portage

Program for Air Quality, Health and Society

THE UNIVERSITY OF UTAH

Dockery et al. NEJM 1993;329:1753-9

Air pollution impacts disease in multiple organ systems

Respiratory disease mortality Respiratory disease morbidity Lung cancer

Pneumonia Upper and lower respiratory symptoms Airway inflammation Decreased lung function Decreased lung growth

Insulin resistance **Type 2 diabetes Type 1 diabetes** Bone metabolism

High blood pressure

Endothelial dysfunction Increased blood coagulation Systemic inflammation **Deep venous thrombosis**

Stroke

Neurological development Mental health **Neurodegenerative diseases**

Cardiovascular disease mortality Cardiovascular disease morbidity Myocardial infarction Arrhythmia Congestive heart failure Changes in heart rate variability ST-segment depression

Skin ageing

Premature birth Decreased birthweight

Decreased fetal growth Intrauterine growth retardation Decreased sperm quality Pre-eclampsia

Chronic kidney disease

Program for Air Quality, Health and Society THE UNIVERSITY OF UTAH

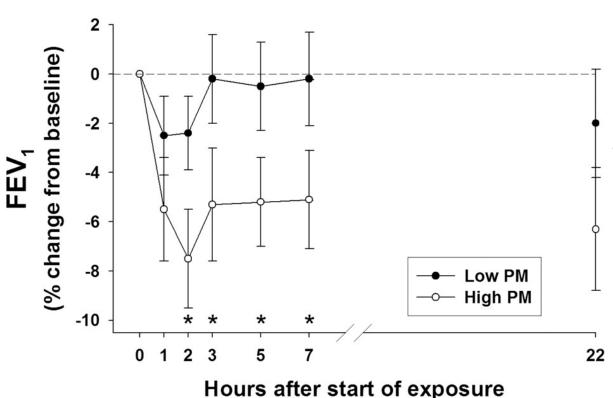
Thurston et al. Eur Resp J 2017

Long and short term effects on cardiovascular disease

- Long term:
 - Large national cohort studies demonstrate direct relationships being PM2.5 local exposure and both total mortality and cardiovascular mortality
 - CVD risk increases 10% for each 10 μ g/M³ increase in PM2.5
 - Thurston et al. Environmental Health Perspectives 2016
- Short term:
 - Local studies from Utah have demonstrated increased risk of heart attacks during 1-3 days after onset of increased PM2.5 pollution
 - 4% increased rate for each 10 $\mu g/M^3$ increase in PM2.5
 - Pope et al. Circulation 2006

 $PM_{2.5} = 28.3$

Assessed pollutant exposure, changes in pulmonary function; airway inflammation Randomized cross over trial 60 adults with mild to moderate asthma taking two leisurely 2-hr walks in London



$$PM_{2.5} = 11.9$$

McCreanor et al. NEJM 2007; 357:2348

Changes in pulmonary function during and after Exposure on Oxford Street and in Hyde Park

Program for Air Quality, Health and Society

THE UNIVERSITY OF UTAH

- Key correlations were with PM_{2.5}, ultrafine particles, elemental carbon and nitrogen dioxide
- Significant increases in markers of airway inflammation

McCreanor et al. NEJM 2007; 357:2348

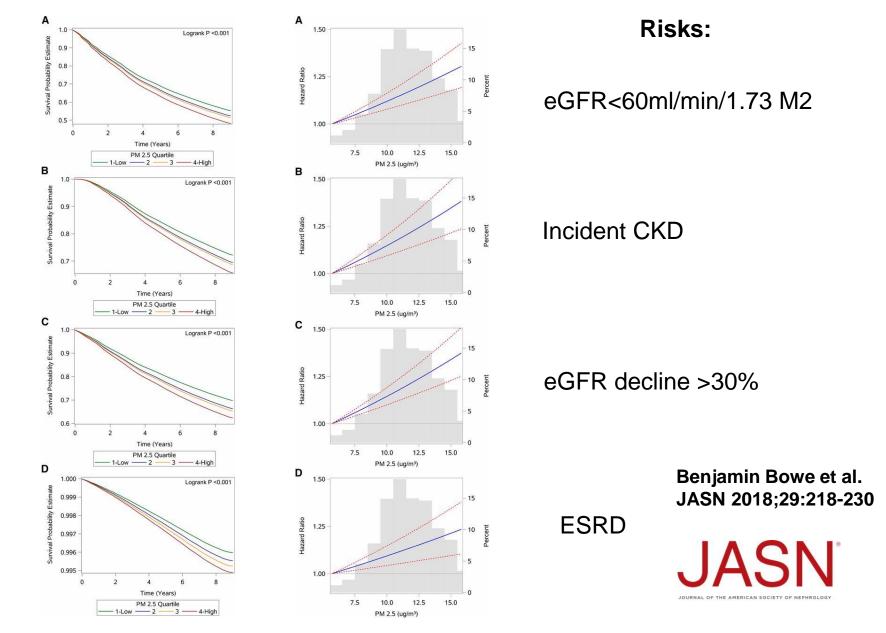
Impact of air pollution on cognitive function

- Nurses' Health Study
 - 19,000 women aged 70-81
 - Followed over time with estimates of PM2.5 and course particle exposure
 - Decline in cognitive function on sophisticated testing associated with increased pollution
 - An increment of 10 µg/m³ long term PM exposure was cognitively equivalent to aging by approximately 2 years

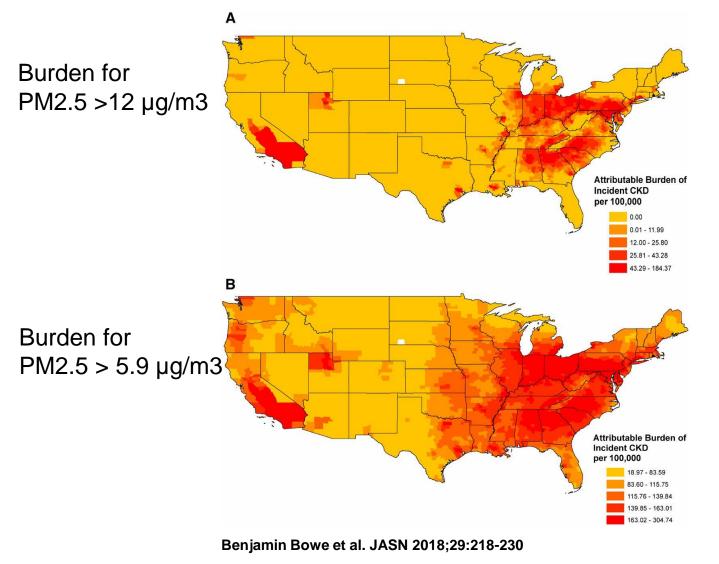
Program for Air Quality, Health and Society THE UNIVERSITY OF UTAH Arch Intern Med 2012; 172:219

Effects of Air Pollution on Children

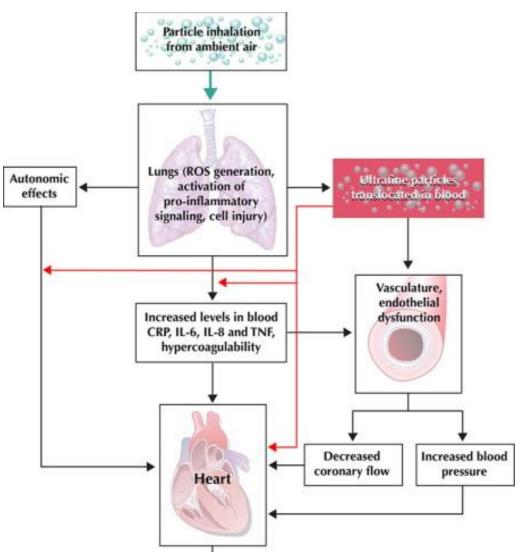
- Incidence of asthma
- Acute asthma exacerbations
- Lung growth
- Lost IQ points



Is there a risk of CKD associated with increased exposure to PM2.5?

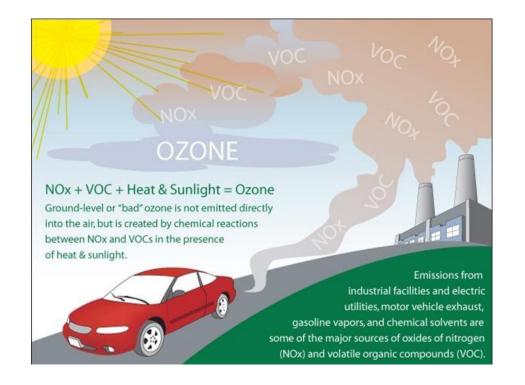

- PM2.5 exposure is associated with
 - Hypertension
 - Endothelial cell dysfunction
 - Oxidative stress
- Bowe et al. JASN 2018
 - Observational cohort of 2482737 Veterans followed 8.52 years
 - Ground level PM2.5 monitoring and NASA satellite data

Program for Air Quality, Health and Society THE UNIVERSITY OF UTAH


Analyses of risk of renal outcomes by PM2.5 concentrations (PM2.5 of 5.7 µg/m3 served as a reference) with PM2.5 probability distribution in the background.

Geographic distribution of the national burden of incident CKD attributable to air pollution in the United States.

JASN[®]



Simkhovich et al. J Am Coll Cardiol 2008

BARD SO YREABYNNU CHOL CHOL

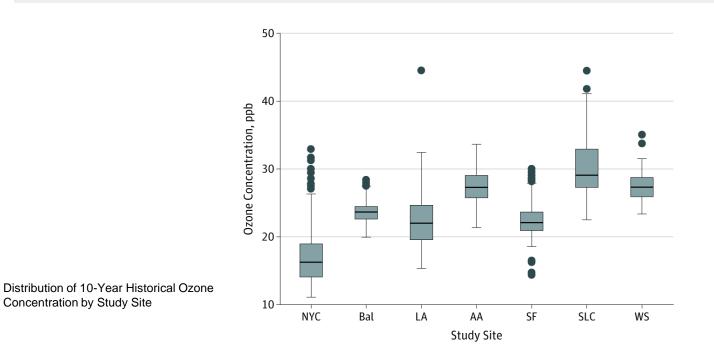
Ground level ozone

EPA 8 hr standard < 70 ppb

Summertime ozone is a challenge along the Wasatch Front

Wintertime ozone is a challenge in the Uinta Basin

Short-term ozone exposure

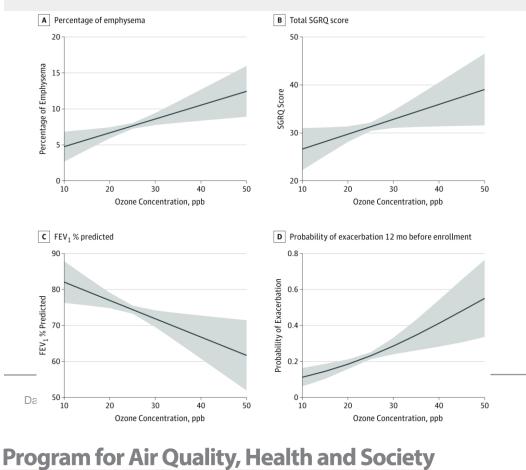

- EPA threshold of 8-hr level of 70 ppb
- Association with
 - Acute exacerbations of asthma
 - Acute exacerbations of COPD
- Less information about longer term effects of ozone
 - No annual threshold designated by EPA

From: Association of Long-term Ambient Ozone Exposure With Respiratory Morbidity in Smokers

JAMA Intern Med. 2020;180(1):106-115. doi:10.1001/jamainternmed.2019.5498

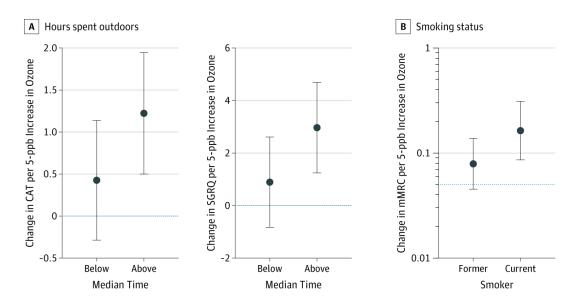
Date of download: 10/20/2021

Copyright 2019 American Medical Association. All Rights Reserved.



THE UNIVERSITY OF UTAH

From: Association of Long-term Ambient Ozone Exposure With Respiratory Morbidity in Smokers


JAMA Intern Med. 2020;180(1):106-115. doi:10.1001/jamainternmed.2019.5498

Adjusted Associations of 10-Year Historical Ozone Concentration With Selected Outcomes of Interest: FEV₁ indicates forced expiratory volume in the first second of expiration; ppb, parts per billion; SGRQ, St. George Respiratory Questionnaire. Shaded areas represent 95% Cls.

From: Association of Long-term Ambient Ozone Exposure With Respiratory Morbidity in Smokers

JAMA Intern Med. 2020;180(1):106-115. doi:10.1001/jamainternmed.2019.5498

Effect Estimate of Ozone on Outcomes by Time Spent Outdoors and Smoking StatusCAT indicates COPD (chronic obstructive pulmonary disease) Assessment Test; mMRC, modified Medical Research Council Dyspnea Scale; ppb, parts per billion; SGRQ, St. George Respiratory Questionnaire. Error bars represent 95% CIs. P for interaction <.05 for analyses.

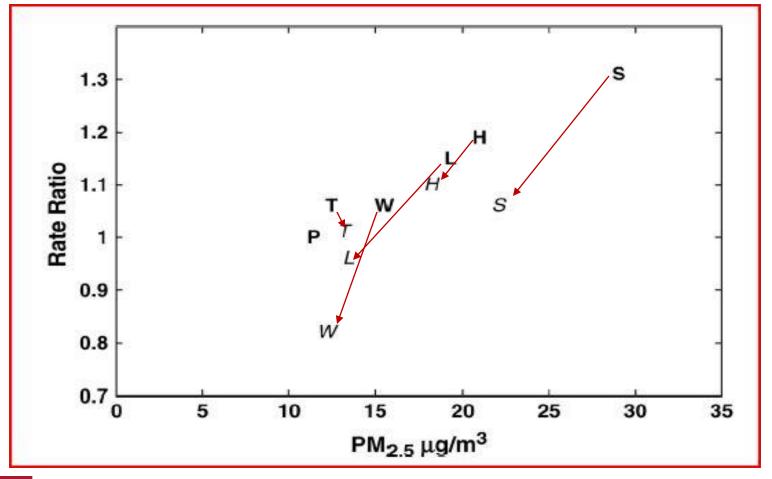
Date of download: 10/20/2021

Copyright 2019 American Medical Association. All Rights Reserved.

Air Pollution and COVID-19

- The lockdown in response to the pandemic has lead to improved air quality, best seen in China and Europe
- Air pollution exposure is associated with increased risk of, and poor outcomes from, pneumonia
 - Dysregulated inflammation
 - Oxidative stress
- Prior to COVID, air pollution exposure is associated with increased risk of acute respiratory distress syndrome from viral infections, trauma

Study	Country	Exposure	COVID-19 Outcome	Principal Findings
Wu <i>et al.</i> (April 2020)	United States	$PM_{2.5}$ Average between 2000 and 2016	Mortality rate	Increase of 1 μ g/m ³ in PM _{2.5} associated with an 8% increase in mortality rate
Cole <i>et al.</i> (June 2020)	The Netherlands	$PM_{2.5}$, NO_2 , and SO_2 Average between 2015 and 2019	Cases Hospital admissions Deaths	1 μ g/m ³ increase in PM _{2.5} associated with 9.4 more cases, 3.0 more hospital admissions, and 2.3 more deaths NO ₂ (but not SO ₂) associated with cases and deaths
Hendryx <i>et al.</i> (June 2020)	United States	$\text{PM}_{2.5}{}^{*},$ diesel PM^{\dagger} and $\text{O}_{3}{}^{*}$	Cases Deaths	PM _{2.5} and diesel PM associated with higher prevalence and mortality Diesel PM appeared to be the primary driver for associations with PM _{2.5}
Travaglio <i>et al.</i> (June 2020)	England	PM _{2.5} , PM ₁₀ , SO ₂ , NO ₂ , NO, and O ₃ Average between 2018 and 2019	Cases Deaths Infectivity rate	NO and NO ₂ significant predictors of cases independent of population density 1 μ g/m ³ increase in SO ₂ and NO associated with 17% and 2% higher mortality, respectively O ₃ negatively associated with cases and deaths PM _{2.5} , PM ₁₀ , and SO ₂ associated with SARS-CoV-2 infectivity (OR, 1.12, 1.07, and 1.32, respectively) but not cases or deaths
Konstantinoudis <i>et al.</i> (August 2020)	England	$PM_{2.5}$ and NO_2 Average between 2014 and 2018	Mortality rate	1 μ/m^3 increase in PM _{2.5} and NO ₂ associated with 1.4% and 0.5% higher mortality rate, respectively
Liang <i>et al.</i> (October 2020)	United States	PM _{2.5} , NO ₂ , and O ₃ Annual mean between 2010 and 2016	CFR Mortality rate	NO ₂ associated with 11.3% and 16.2% higher CFR and mortality rate, respectively, per IQR PM _{2.5} associated with 14.9% higher mortality rate per IQR, but not with CFR No association between O ₃ and CFR or mortality rate


Mein et al. AnnalsATS 2021, 18:1450

Do efforts to improve air quality make a difference for health?

Reduction in Fine Particulate Air Pollution and Mortality: Extended Follow-up of the Harvard Six Cities Study

Program for Air Quality, Health and Society

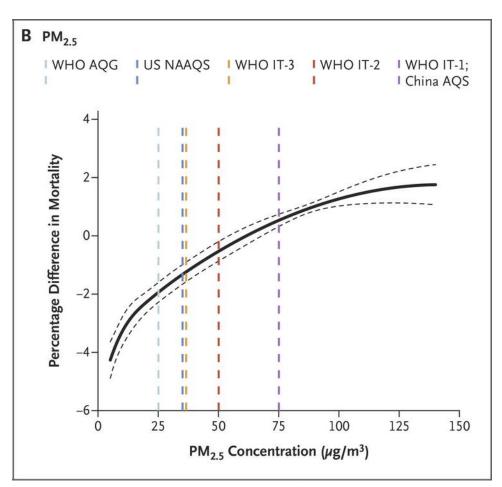
THE UNIVERSITY OF UTAH Am J Respir Crit Care Med Vol 173. pp 667–672, 2006

Fine particulate air pollution and life expectancy in the US

- Detailed monitoring information at the county level
- Looking at late 1970's and early 1980's and at late 1990's and early 2000's
- Cross-sectional comparisons within each period
- Proxies for smoking, access to health care, etc.
- Temporal comparisons between periods each county as its own control

Pope et al. NEJM 2009; 360: 376

Program for Air Quality, Health and Society THE UNIVERSITY OF UTAH

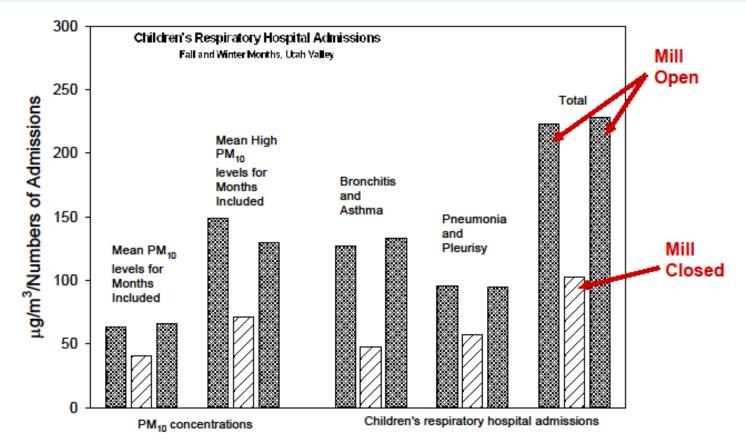

Pope et al. 2009: Results

- Air quality improved over time across the country
- Life expectancy increased (2.72 years)
- During each period, cross-sectional data showed negative association between life expectancy and pollution levels
- Reduction of 10 $\mu m/m^3$ resulted in increase of 0.61 \pm 0.2 years life
- Benefit regardless of baseline level; in fact greater increase for those areas with less pollution initially
- From 1980 through 2000, improved air quality accounted for approximately 15% of change in life expectancy

Increased mortality associated with short term air pollution exposure

- Data from over 600 cities in 24 countries
- Rolling 2 day average exposure
- All cause mortality
- Effects even at levels considered "safe"

C Liu et al. N Engl J Med 2019;381:705-715


Geneva Steel Strike

Program for Air Quality, Health and Society THE UNIVERSITY OF UTAH

UNIVERSITY DE LEAH School%Medicine

When the steel mill was open, total children's hospital admissions for respiratory conditions **approx. doubled.**

Sources: Pope. Am J Pub Health.1989; Pope. Arch Environ Health. 1991

Wildfires and Health

How bad is this year's Utah wildfire season? Actually, not that bad so far — unless you're trying to breathe.

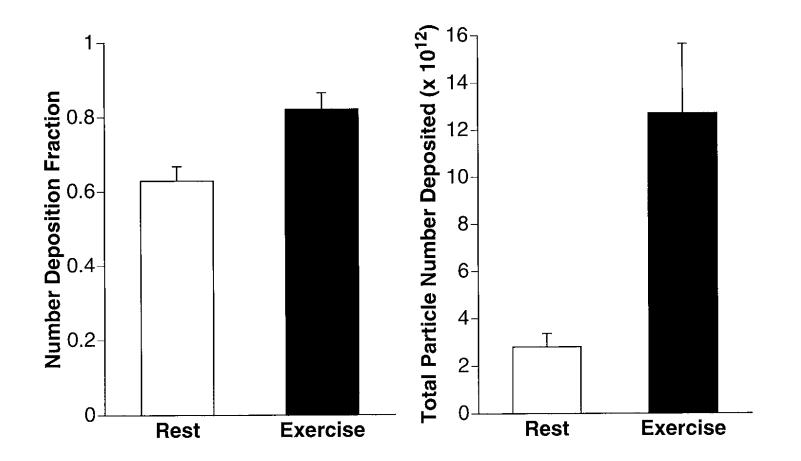
Salt Lake Tribune August 17, 2018

Constituents of wood smoke

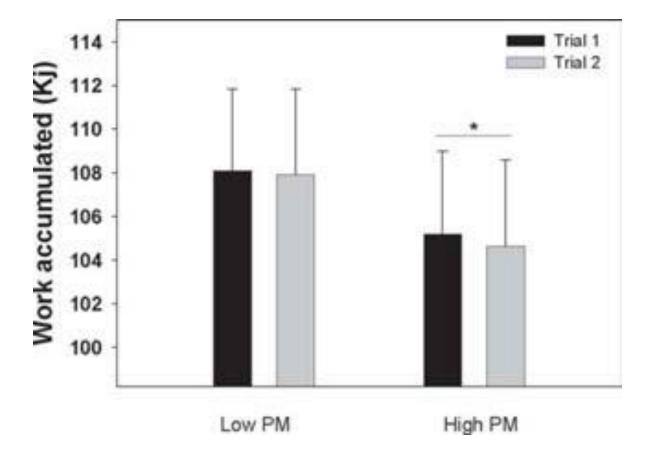
- Regulated pollutants
 - Fine particles, carbon monoxide, nitrogen oxides
- Respiratory irritants impairing cellular function
 Phenols, cresols, acrolein, acetaldehyde
- Organic carcinogens
 - Benzene, formaldehyde, 1,3 butadiene
- Carcinogenic cyclic compounds
 - Polycyclic aromatic hydrocarbons
 - Dioxins

Wildfires are major health events

- Wildfire activity around the world is associated with
 - Increased emergency room visits
 - Increased acute respiratory distress hospital visits
 - Increased hospital admissions for respiratory illness
 - Increased use of asthma medications
 - Decreased lung function
 - Increased evidence of inflammation in the blood
 - Increased mortality (over age 65)


Program for Air Quality, Health and Society THE UNIVERSITY OF UTAH

What should we tell our patients about exercise?


Increased lung particle deposition during exercise

Program for Air Quality, Health and Society THE UNIVERSITY OF UTAH

MATURA OF UNABLE OF UTAM

Impact of particulate air pollution on cycle work capacity

Rundell K W Br J Sports Med 2012;46:407-412

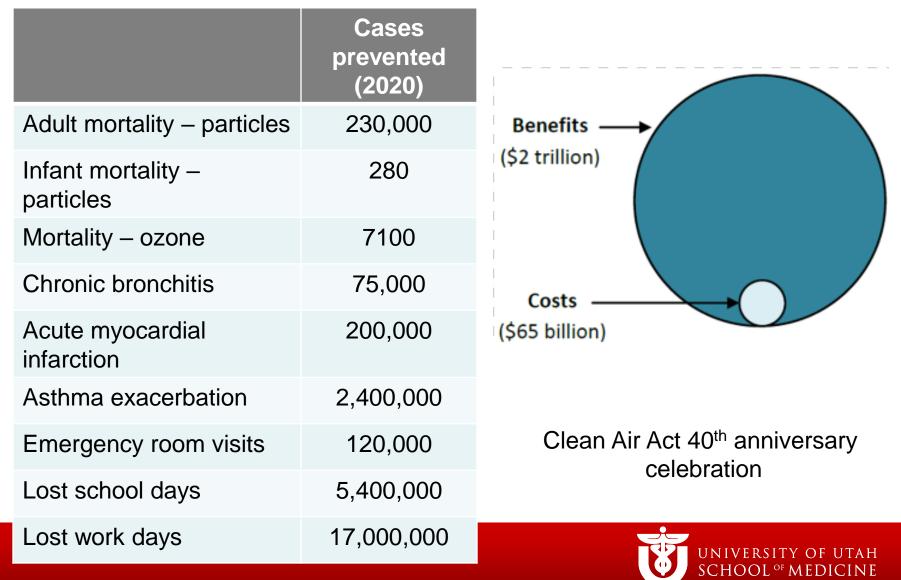
SCHOOL ** MEDICINE

What do I tell my patients?

- Pay attention to air quality; note if your symptoms change.
- When air quality is poor, it is particularly important to use your medications properly.
- During "bad air" days:
 - Exercise away from roadways
 - Exercise indoors
 - Stay indoors
- Starting to think about masks for high-risk individuals when outdoors

Program for Air Quality, Health and Society THE UNIVERSITY OF UTAH

Air Quality Index


Air Quality Index

Action Forecast	Health Forecast		
Unrestricted Action Voluntary Action Mandatory Action	Air Quality Index (AQI)	PM 2.5	Ozone
	Good	0 - 12.0 μg/m ³	0 - 0.054 ppm
	Moderate	12.1 - 35.4 μg/m ³	0.055 - 0.070 ppm
	Unhealthy for Sensitive Groups	35.5 - 55.4 μg/m ³	0.071 - 0.085 ppm
	Unhealthy	55.5 - 150.4 μg/m ³	0.086 - 0.105 ppm
	Very Unhealthy	150.5 - 250.4 μ g/m ³	0.106 - 0.200 ppm
\sim	Hazardous	Above 250.5 μ g/m ³	Above 0.201 ppm
		Based on a 24-hour	Based on an 8-hour
		average.	average.

Program for Air Quality, Health and Society

THE UNIVERSITY OF UTAH

Cost-benefit of the Clean Air Act 1990-2020

Thanks- happy to take questions

