Pediatric Cardiac Surgery: Past, Present, and Future

Peter J. Gruber, MD, PhD Johan Ehrenhaft Professor and Chair Department of Cardiothoracic Surgery Carver College of Medicine University of Iowa

Carver School of Medicine- Iowa

CHOI

"Any surgeon who wishes to preserve the respect of his colleagues would never attempt to operate on the heart."

(Theodore Billroth)

Evolution of Congenital Cardiac Surgery

4 eras complete, 1 in process, more to come

Closed extra-cardiac operations	1937		
Early closed or semi-closed intra-cardiac operations	1944		
Complete intra-cardiac repair	1952		
Refinement of technique			
Management of unforeseen co-morbidities	2000		
Disease causality risk assessment and surgical planning			
?	?		

Evolution of Cardiac Surgery

4 historical eras

Closed extra-cardiac operations
1937/8 - Ligation of patent ductus arteriosus (Strider and Gross)

2. Early closed or semi-closed intra-cardiac operations

- 1944 Coarctation repair (Craaford)
- 1944 Blalock-Taussig shunt
- 1946 Potts' shunt
- 1946 Closed pulmonary valvotomy (Sellors)
- 1948 Blalock-Hanlon atrial septectomy
- 1952 Pulmonary artery band (Muller and Dammann)

Evolution of Cardiac Surgery

4 historical eras

- 3. Complete intra-cardiac repair
 - 1952 Atrial well for ASD closure (Gross)
 - 1952 ASD closure with inflow occlusion and hypothermia (Lewis)
 - 1954 Controlled cross-circulation (Lillehei)
 - 1958 Superior cavopulmonary anastomosis (Glenn)
 - 1962 Waterston's shunt
 - 1966 Balloon atrial septostomy (Rashkind)
 - 1968 Atriopulmonary connection (Fontan and Baudet)

Evolution of Cardiac Surgery

4 historical eras

- 4. Refinement of technique
 - 1971 Complex repair in neonates and infants with DHCA (Barratt-Boyes)
 - 1975 Arterial switch operation (Jatene)
 - 1976 Introduction of PGE₁ (Elliott)
 - 1981 Stage I palliation of hypoplastic left heart syndrome (Norwood)
 - 1984 Neonatal heart transplantation (Bailey)

PGE_1

PGE_1

Ligation of patent ductus arteriosus

- 1937 John Stridor
- 1938 Robert Gross

Ligation of patent ductus arteriosus

- 1937 John Stridor
- 1938 Robert Gross

Coarctation of the aorta repair

- 1944 Blalock-Park
- 1944 Craaford

Coarctation of the aorta repair

• 1944 Blalock-Park

• 1944 Craaford

Johns Hopkins Hospital, 1945

- Alfred Blalock
- Vivien Thomas
- William Longmire
- Denton Cooley

Palliation of cyanotic heart disease

B-H atrial septectomy

Rashkind

Atrial well technique of ASD closurethe wild west (Gross)

Evolution of ASD closure

Date	Surgeon	Technique	Institution	Mortality
1948	Murray	External suturing		
1952	Gross	Atrial well- blind!	Boston Children's	30.2%
1952	Lewis	Inflow occlusion	Мауо	12.1%
1953	Gibbon	Direct closure with CPB	Penn	
today	all	СРВ	everywhere	<1%

Cardiopulmonary Bypass Circuit

Cross circulation- Mayo experience

Cross circulation

- 1 y.o. 6.9 kg VSD, 11d survival
- support Owen Wangenstein
- 4 y.o. girl with a VSD
- 45 operations
- TOF, AVSD, VSD
- No operative deaths were directly attributable due to the cross circulation technique
- post-operative heart block was the real killer

Risk in Congenital Heart Surgery: Chronological improvement

How do we crack the final percentage?

Today

- team oriented approach
- importance of co-morbidities
- operations for single ventricle physiology
- neurodevelopment
- fetal interventions

Tetralogy of Fallot

Patients with same disease have different responses

Post operative day 5, TOF

HLHS

HLHS- Classic Norwood

HLHS- Classic Norwood

Are surgeons to blame for everything?

Neurodevelopmental (Early and Latent) Outcomes — — — — — — — — — — — — — — — — — — —						
Abnormal Brain at Birth	<u>Infancy</u>	Pre-School	<u>Middle School</u>	Adolescence-Transition to ACHD		
↓ head circumference	Seizures (cortex)	Delayed motor skills	Behavior problems	Depression and behavior problems		
Structural abnormalities	↑ PVL (white matter)	Delayed language	Inattention/Hyperactivity	Inattention/hyperactivity		
PVL	Delayed motor skills	Microcephaly	↓ Handwriting	↓ Visual motor integration		
CNS immaturity			↓ Visual motor integration	\downarrow Planning and executive function		

Causes of adverse neurodevelopmental outcomes: Multifactorial, interactive, and ongoing

Fetus \rightarrow Birth –	→ Surgery –	$\rightarrow \text{ICU} \rightarrow \text{Stepdown} \rightarrow \rightarrow \text{I}$	Home $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$
↓ Substrate delivery	Anesthesia	Early Modifiers	Late Modifiers
↓ Oxygen delivery	Opiates	Genetic Polymorphisms	Hypoxemia
↑↓ Cerebral resistance	Benzodiazepines	Alterations in CBF	Reoperations
Placental abnormalities	CPB	Hypoxemia, hypocarbia, hypotension	Socioeconomic Status
Genetic syndromes	Hypothermia	Hyperthermia	PTSD, maternal depression
Delayed diagnosis	Circulatory Arrest	Seizures Stroke	Poor nutrition

Preoperative Modifiers Low Cerebral Blood Flow Low Cerebral O₂ Content ICU Morbidity (emboli, fever, etc.)

Neurodevelopmenta	ll (Early and Later	nt) Outcomes —		>
Abnormal Brain at Birth	<u>Infancy</u>	Pre-School	Middle School	Adolescence-Transition to ACHD
↓ head circumference	Seizures (cortex)	Delayed motor skills	Behavior problems	Depression and behavior problems
Structural abnormalities	↑ PVL (white matter)	Delayed language	Inattention/Hyperactivity	Inattention/hyperactivity
PVL	Delayed motor skills	Microcephaly	↓ Handwriting	↓ Visual motor integration
CNS immaturity			↓ Visual motor integration	↓ Planning and executive function

Causes of adverse neurodevelopmental outcomes: Multifactorial, interactive, and ongoing

Fetus \rightarrow Birth –	→ Surgery –	$\rightarrow ICU \rightarrow Stepdown \rightarrow \rightarrow]$	Home $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$
↓ Substrate delivery	Anesthesia	Early Modifiers	Late Modifiers
↓ Oxygen delivery	Opiates	Genetic polymorphisms	Hypoxemia
↑↓ Cerebral resistance	Benzodiazepines	Alterations in CBF	Reoperations
Placental abnormalities	CPB	Hypoxemia, hypocarbia, hypotension	Socioeconomic status
Genetic syndromes	Hypothermia	Hyperthermia	PTSD, maternal depression
Delayed diagnosis	Circulatory Arrest	Seizures Stroke	Poor nutrition

<u>Preoperative Modifiers</u> Low Cerebral Blood Flow Low Cerebral O₂ Content <u>ICU Morbidity (emboli, fever, etc.)</u>

Collaborative Model of Care

What's next

- precision therapies guided by genetics
- new and nano technology introduced drugs, devices, and materials
- robotic manipulations

What's next

- precision therapies guided by genetics
- new and nano technology introduced drugs, devices, and materials
- robotic manipulations

What tools are in place

- patients and clinical data
- sequencing and bioinformatic tools
- biologic tools for variant verification
- ontologies that speak to each other

What tools are in place

- patients and clinical data
- sequencing and bioinformatic tools
- biologic tools for variant verification
- ontologies that speak to each other

How do we get many thousands of samples to analyze?

- I have thousands of DNA, hundreds of tissue, and tens of stem cells lines- not enough
- Collaboration to get the rest
 - single investigators
 - institutional BioBanks
 - larger initiatives

CHSS collaborative sites

CHSS enrolling institutions

CHSS study enrollment

Samples by diagnosis

What tools are in place

- patients and clinical data
- sequencing and bioinformatic tools
- biologic tools for variant verification
- ontologies that speak to each other

Turn to development for answers

- Fish- transgenic zebrafish
- Mice- gene-targeted mice
- Human-genome sequencing and iPSC production

Chr 5 variation in the ISL1 region

Chr 5 variation in the ISL1 region

ISL1 risk by ethnicity

ISL1 risk by ethnicity

ISL1 risk by ethnicity

Total # SNPs by chromosome

What's next

- precision therapies guided by genetics
- new and nano technology introduced drugs, devices, and materials
- robotic manipulations

2 y.o. TOF/AVC

- 2 y.o. female with transitional AVC, dysplastic RAVV, and PV stenosis.
- primary repair in infancy
- secondary repair at 1 year with RAVV repair and RV-PA conduit.
- now with PA stenosis and severe RAVV regurgitation

Complete common AV canal

Native valve function- pre

Heimlich valve principal

ECM TV creation

- completed cylinder valve
- ends are tacked to ventricular wall
- other cylindrical end is sewed to annulus

ECM TV function- post

In vitro images

Risk in Congenital Heart Surgery: Chronological improvement

Generation of human iPS cells of patient specific tissue

Patient-specific cellular reprogramming in CHD

- -11 lines of AF: gest age 3@19, 3@20, 1@22, 1@25, 1@32, 1@33 weeks
- average reprogramming time with clonal selection = 3 weeks
- creation of >100 stable iPS cell lines

Reprogramming using amniocentesis-derived fibroblasts

Experimental Time (Gest. Age) Procedure 0 (14-20 weeks) Amniocentesis 1 day (14-20 weeks) Purification of amniotic fluid fibroblasts 1 week (15-21 weeks) Expansion of fibroblasts Transduction of fibroblasts (4XF/miR) 2 weeks (17-23 weeks) 1 week (18-24 weeks) Selection of iPSC clones 1 week (19-25 weeks) Screen iPSC clones 3 weeks (22-28 weeks) **Expansion iPSC clones** Directed differentiation 2-6 weeks (24-32 weeks) 4-8 weeks (28-40 weeks) Assay of differentiated cell types

ISL1 expression

Neuronal differentiation

induction

Expanded iPS clones of two different patient with congenital heart disease and hES as a control (beta III tubulin)

iPS precursor

differentiation

Directed differentiation of patient-specific iPS cells may eventually help predict responses

"This isn't rocket science, it's much harder" (A. Spiegel)

Portion of G1-S transition (Korn, 1999) Portion of propulsion and altitude control, system from Cassini-Saturn mission (NASA)