## SGLT2i, GLP-1A and MRA in Cardiorenal Protection

May 19, 2022 Monique E. Cho, MD Division of Nephrology and Hypertension University of Utah





## **Disclosure**

### UpToDate

Grant funding from the VA and NIDDK

## **Objectives**

### SGLT2i:

- Glomerular and tubular effects of SGLT2i
- Proposed mechanisms underlying benefits
- Summary of renal outcomes (by baseline proteinuria, eGFR)
- Summary of HF outcomes

## GLP-1 receptor agonists (GLP-1RA):

- Proposed mechanisms underlying clinical benefits
- Effects on CV risk factors
- Summary of clinical CV and renal outcomes

### Mineralocorticoid receptor antagonists (MRAs):

- Proposed mechanisms underlying clinical benefits
- Steroidal vs non-steroidal MRAs
- Summary of clinical CV and renal outcomes (FIDELIO & FIGARO)

### Summary and recommendations



30

25

20



## The Captopril Study

#### 409 insulin-dependent T1DM patients:

- Mean age: 35
- Duration of DM: 22 yrs
- Baseline proteinuria 2.5-3 g/g
- A1c 12%
- Mean CrCL:
  - 84 mL/min (captopril)
  - 79 mL/min (placebo)

Percentage Who Died or Needed Dialysis or Transplantation .\_o<sup>g\_0--</sup> 15 Captopri 10 5 0 3.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 4.0 Years of Follow-up Placebo 202 198 192 186 171 121 100 59 26 37 207 207 204 201 195 140 103 64 Captopril

P = 0.006

Placebo

Q----

Lewis, NEJM 1993

## **Renal outcomes with ARB in T2DM**

#### **Doubling of serum creatinine, ESKD, or death**



## **Glucose reabsorption in proximal nephron**

#### SGLT2:

- a low affinity, high capacity luminal transporter in the S1 and S2 segments of the proximal tubule
- normally reabsorbs about 97% of filtered glucose

#### SGLT1:

- a high affinity, low capacity transporter in the S3 segment
- normally reabsorbs the remainder



Glucose

Al-Shamasi et al. Int. J. Mol. Sci. 2021, 22(23), 12677

## The effect of proximal sodium reabsorption on tubuloglomerular feedback



## The initial fall in eGFR with SGLT2i initiation, followed by improved slope: DAPA-CKD



Heerspink et al., NEJM 2020;383:1436

## SGLT2i inhibits NHE3, reducing proximal Na reabsorption

- In proximal nephron, most Na<sup>+</sup> is reabsorbed by *NHE3*, whose activity is increased by luminal glucose.
- SGLT2 and NHE3 also are interlinked by membrane associate protein 17 (MAP17) that interacts via post synaptic density protein 95/tight junction protein 1 (PDZK1).
- SGLT2 increases activity of NHE3 as well as the sodium-phosphate exchanger type IIa, the organic cation transporter, the chlorideformate exchanger, and the urate-anion exchanger.
- These widespread effects on the proximal tubule may explain why SGLT2i maintain diuretic effect in CKD stage 3/4 despite little glycosuria.



Am J Physiol Cell Physiol 2020 (318)328 Wilcox CS., Hypertension. 2020;75:894

## **Uricosuric effect of SGLT2i**

#### Reduction of serum uric acid by $\sim 0.6-0.75 \text{ mg/dL}$



## Proposed mechanisms for the uricosuric effect of SGLT2i:

- Glycosuria-induced uric acid secretion via GLUT9 isoform 2 in the proximal tubule
- Inhibition URAT1-mediated urate reabsorption in the proximal tubule
- Inhibition of uric acid uptake via GLUT9 isoform 2 at the collecting duct of renal tubule

Chino et al., Biopharm Drug Dispos. 2014;35: 391

# Potential pathways that reduce renal ischemia with SGLT2 inhibition



# Summary of renal benefits by SGLT2i in clinical trials

## Summary of CV outcome, HF and renal trials published on SGLT2i drugs (shown as HR) Renal endpoint: 50% decline in eGFR, ESKD, renal or CV death

|                        | CKD outc | ome trial | CV Outcome trials |         |                     | HF outcome trials |         |                     |                           |
|------------------------|----------|-----------|-------------------|---------|---------------------|-------------------|---------|---------------------|---------------------------|
| Trial                  | CREDENCE | DAPA-CKD  | EMPA-REG          | CANVAS  | DECLARE-<br>TIMI 58 | VERTIS CV         | DAPA HF | EMPEROR-<br>REDUCED | EMPEROR-<br>PRESERVED     |
| Drug                   | Cana     | Dapa      | Empa              | Cana    | Dapa                | Ertugliflozin     | Dapa    | Empa                | Empa                      |
| Ν                      | 4401     | 4304      | 7020              | 10142   | 17160               | 8238              | 4744    | 3730                | 5988                      |
| Age                    | 63       | 62        | 63                | 63      | 64                  | 64                | 66      | 67                  | 72                        |
| % of DM                | 100      | 67        | 100               | 100     | 100                 | 100               | 42      | 50                  | 49                        |
| eGFR                   | 56       | 43        | 74                | 77      | 85                  | 76                | 66      | 62                  | 61                        |
| % ASCVD                | 50       | 37        | 100               | 72      | 41                  | 100               | -       | -                   | -                         |
| % HF                   | 15       | 11        | 10                | 14      | 10                  | 24                | 100     | 100                 | 100                       |
| Median f/u<br>duration | 2.6 yrs  | 2.4 yrs   | 3.1 yrs           | 2.4 yrs | 4.2 yrs             | 3.0 yrs           | 18.2 mo | 16 mo               | 26 mo                     |
| % RAASi                | 100      | 88        | 81                | 80      | 81                  | 81                | 83      | 88                  | 81                        |
| Hosp for HF            | 0.61     |           | 0.65              | 0.67    | 0.73                | 0.70              | 0.70    | 0.69                | 0.71                      |
| CV death               | 0.78     | 0.81      | 0.62              | 0.87    | 0.98                | 0.92              | 0.82    | 0.92                | 0.91                      |
| All-cause<br>mortality | 0.83     | 0.69      | 0.68              | 0.87    | 0.93                | 0.93              | 0.83    | 0.92                | 1.00                      |
| Renal<br>endpoint      | 0.66     | 0.61      | 0.54              | 0.60    | 0.53                | 0.81              | 0.71    | 0.50                | −1.25 vs.<br>−2.62 ml/min |
| ESRD                   | 0.68     | 0.64      | 0.45              | -       | -                   | -                 | -       | -                   | -                         |

### Design, recruitment, and baseline characteristics of the EMPA-KIDNEY trial Started in 1/2019

#### Background



#### Sefficary and star of the sodium-ducore controlsport of 2 inhibitor (SOT7) on antipzin Nono bear assessed in a decreated population of people with chronic kidney away (chiD).

#### **Streamlined design**



#### RCT: Empagliflozin10 mg once daily vs. matching placebo



#### Inclusion criteria: eGFR $\ge 20$ , < 45 mL/min/1.73 m<sup>2</sup>; or $\ge 45$ , < 90 and uACR $\ge 200$ mg/g

#### Composite primary outcome:

- CV or renal death
- Maintenance dialysis or kidney transplant
- Sustained eGFR < 10 mL/min/1.73 m<sup>2</sup> or sustained ≥ 40% eGFR decline



#### Conclusion

The EMPA-KIDNEY trial has recruited a large, widely generalizable CKD population with high proportions of the types of people without diabetes and with low eGFR or uACR who have not been included in previous trials of SGLT2i. Results are anticipated in 2022.



The EMPA-KIDNEY Collaborative Group. NDT (2022) @NDTSocial

## DAPA-CKD: Dapagliflozin is similarly beneficial for renal endpoints in diabetic and non-diabetic patients



## SGLT2i therapy associated with renal benefit regardless of history of ASCVD

#### **Overall kidney outcomes**

|                          | Treatment            |                            | Placebo       |                            |                          |
|--------------------------|----------------------|----------------------------|---------------|----------------------------|--------------------------|
|                          | No./total No.        | Rate/1000<br>patient-years | No./total No. | Rate/1000<br>patient-years | Hazard ratio<br>(95% CI) |
| EMPA-REG OUTCOME         | 81/4645              | 6.3                        | 71/2323       | 11.5                       | 0.54 (0.40-0             |
| CANVAS program           | NA/5795              | 5.5                        | NA/4347       | 9.0                        | 0.60 (0.47-0             |
| DECLARE-TIMI 58          | 127/8582             | 3.7                        | 238/8578      | 7.0                        | 0.53 (0.43-0             |
| CREDENCE                 | 153/2202             | 27.0                       | 224/2199      | 40.4                       | 0.66 (0.53-0             |
| VERTIS CV                | 175/5499             | 9.3                        | 108/2747      | 11.5                       | 0.81 (0.64-1             |
| Fixed-effects model (Q=7 | 7.96; df = 4; P = .0 | 09;                        |               |                            | 0.62 (0.56-0             |



#### Kidney outcomes by ASCVD status

|                        | Treatment         |                                     | Placebo       |                            |                          |                     |                   |           |
|------------------------|-------------------|-------------------------------------|---------------|----------------------------|--------------------------|---------------------|-------------------|-----------|
|                        | No./total No.     | Rate/1000<br>patient-years          | No./total No. | Rate/1000<br>patient-years | Hazard ratio<br>(95% CI) | Favors<br>treatment | Favors<br>placebo | Weight, % |
| Patients with ASCVD    |                   |                                     |               |                            |                          | With ASCVD          |                   |           |
| EMPA-REG OUTCOME       | 81/4645           | 6.3                                 | 71/2323       | 11.5                       | 0.54 (0.40-0.75)         |                     |                   | 16.67     |
| CANVAS program         | NA/3756           | 6.4                                 | NA/2900       | 10.5                       | 0.59 (0.44-0.79)         |                     |                   | 19.23     |
| DECLARE-TIMI 58        | 65/3474           | 4.7                                 | 118/3500      | 8.6                        | 0.55 (0.41-0.75)         |                     |                   | 18.06     |
| CREDENCE               | 69/1113           | 24.1                                | 102/1107      | 36.5                       | 0.64 (0.47-0.87)         |                     |                   | 17.37     |
| VERTIS CV              | 175/5499          | 9.3                                 | 108/2747      | 11.5                       | 0.81 (0.64-1.03)         |                     | 4                 | 28.66     |
| Fixed-effects model (Q | =6.09; df=4; P    | =.19; <i>I</i> <sup>2</sup> =34.4%) |               |                            | 0.64 (0.56-0.72)         | $\diamond$          |                   |           |
| Patients without ASCVD |                   |                                     |               |                            |                          | Without ASCVD       |                   |           |
| CANVAS program         | NA/2039           | 4.1                                 | NA/1447       | 6.6                        | 0.63 (0.39-1.02)         | •                   |                   | 15.72     |
| DECLARE-TIMI 58        | 62/5108           | 3.0                                 | 120/5078      | 5.9                        | 0.51 (0.37-0.69)         |                     |                   | 37.41     |
| CREDENCE               | 84/1089           | 29.9                                | 122/1092      | 44.3                       | 0.68 (0.51-0.89)         |                     |                   | 46.87     |
| Fixed-effects model (Q | = 1.86; df = 2; P | =.40; <i>I</i> <sup>2</sup> =0.0%)  |               |                            | 0.60 (0.50-0.73)         | $\diamond$          |                   |           |
|                        |                   |                                     |               |                            |                          |                     | 1                 | 1         |
|                        |                   |                                     |               |                            |                          |                     | 1 2               | 2         |
|                        |                   |                                     |               |                            |                          | TR (95% CI)         |                   |           |

Meta-analysis of SGLT2i trials on the composite of renal worsening, ESRD, or renal death stratified by the presence of established <u>atherosclerotic</u> <u>CV disease</u>

#### McGuire DK et al., JAMA Cardiol. 2021;6:148

## Dapagliflozin reduces the risk of renal outcomes independently of baseline HF status: *analysis from DAPA-CKD*

| Effect of Dapagliflozin, Compared With Placebo, in DAPA-CKD<br>Overall and According to Baseline Heart Failure Status |                                                                 |                 |                         |                               |     |                  |                                   |
|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------|-------------------------|-------------------------------|-----|------------------|-----------------------------------|
|                                                                                                                       | Dapagliflozi<br>n/l                                             | in Placebo<br>V | Dapaglifl<br>Events/100 | ozin Placebo<br>Patient-Years |     | HR<br>(95% CI)   | <i>P</i> Value for<br>Interaction |
| Primary outcome: eGl                                                                                                  | Primary outcome: eGFR decline ≥50%, ESKD, or kidney or CV death |                 |                         |                               |     |                  |                                   |
| Overall                                                                                                               | 197/2,152                                                       | 312/2,152       | 4.6                     | 7.5                           | ⊨●→ | 0.61 (0.51-0.72) |                                   |
| HF at baseline                                                                                                        | 31/235                                                          | 51/233          | 6.5                     | 11.0                          |     | 0.58 (0.37-0.91) | 0.59                              |
| No HF at baseline                                                                                                     | 166/1,917                                                       | 261/1,919       | 4.4                     | 7.0                           | ⊢●→ | 0.62 (0.51-0.75) |                                   |
| Secondary outcome: eGFR decline ≥50%, ESKD, or kidney death                                                           |                                                                 |                 |                         |                               |     |                  |                                   |
| Overall                                                                                                               | 142/2,152                                                       | 243/2,152       | 3.3                     | 5.8                           | ⊨●→ | 0.56 (0.45-0.68) |                                   |
| HF at baseline                                                                                                        | 13/235                                                          | 27/233          | 2.7                     | 5.8 <b>—</b>                  |     | 0.45 (0.23-0.87) | 0.36                              |
| No HF at baseline                                                                                                     | 129/1,917                                                       | 216/1,919       | 3.4                     | 5.8                           | ⊢●→ | 0.57 (0.46-0.71) |                                   |

# The protective effect of canagliflozin on annual rate of eGFR decline consistent in all levels of albuminuria but greatest in participants with UACR >300 mg/g at baseline: CANVAS Program

#### Annual rate of change in eGFR from week 6 or 13 to Last available measurement



#### CANVAS: 10,142 patients with T2DM

- 22.3% (2,266) with UACR 30-300 mg/g
- 7.5% (760) with UACR >300 mg/g

- Canagliflozin
- Placebo

Neuen BL et al., JASN 2019;30:2229

## DAPA-CKD: The drop in eGFR with SGLT2i initiation – the concern over starting SGLT2i at low eGFR (<25 mL/min)



Heerspink et al., NEJM 2020;383:1436

## Dapagliflozin is similarly effective in CKD 4 compared to CKD 2/3 in DAPA-CKD



LS mean change in eGFR over the study: Total annual slopes (week 0-EOS)

#### CKD 2/3:

Dapagliflozin -2.98 ml/min/1.73 m<sup>2</sup>/yr Placebo -3.87 ml/min/1.73 m<sup>2</sup>/yr  $\Delta$  0.89

#### CKD 4:

Dapagliflozin **-2.15** ml/min/1.73 m²/yr Placebo -3.38 ml/min/1.73 m²/yr ∧ **1.23** 

Chertow GM et al., JASN 2021, 32 :2352

CREDENCE: Canagliflozin led to an acute drop in eGFR which was mildest in those with eGFR 30-<45 ml/min/1.73 m<sup>2</sup> at screening, and then to slower eGFR decline in every screening eGFR category



#### Jardine MG et al., J Am Soc Nephrol.2020;31:1128

## No difference in adverse events between those with eGFR <30 ml/min/1.73 m<sup>2</sup> and >30 ml/min/1.73 m<sup>2</sup> (a subgroup analysis of CREDENCE)

| Ν                          | lumber of pa<br>with an e | rticipants<br>event | Participants wit<br>per 1000 patie | Participants with an event per 1000 patient-years |             |                  | P          |
|----------------------------|---------------------------|---------------------|------------------------------------|---------------------------------------------------|-------------|------------------|------------|
| (                          | Canagliflozin             | Placebo             | Canagliflozin                      | Placebo                                           | HR (95% CI) | i                | nteraction |
| Any AE                     |                           |                     |                                    |                                                   |             |                  |            |
| eGFR <30 ml/min per 1.73 r | n <sup>2</sup> 77         | 81                  | 435.0                              | 421.6                                             | ⊢•1         | 1.08 (0.79, 1.47 | ) 0.17     |
| eGFR ≥30 ml/min per 1.73 r | n <sup>2</sup> 1706       | 1779                | 348.3                              | 377.6                                             |             | 0.87 (0.82, 0.93 | )          |
| Any serious AE             |                           |                     |                                    |                                                   |             |                  |            |
| eGFR <30 ml/min per 1.73 r | n <sup>2</sup> 37         | 40                  | 209.0                              | 208.2                                             | <b>⊢</b>    | 1.03 (0.66, 1.61 | ) 0.50     |
| eGFR ≥30 ml/min per 1.73 r | n <sup>2</sup> 700        | 766                 | 142.9                              | 162.6                                             | ю           | 0.87 (0.79, 0.97 | ·)         |
| Hyperkalemia               |                           |                     |                                    |                                                   |             |                  |            |
| eGFR <30 ml/min per 1.73 r | n <sup>2</sup> 13         | 13                  | 73.4                               | 67.7                                              | <b>⊢</b>    | 1.20 (0.55, 2.63 | ) 0.43     |
| eGFR ≥30 ml/min per 1.73 r | n <sup>2</sup> 138        | 168                 | 28.2                               | 35.7                                              |             | 0.79 (0.63, 0.99 | )          |
| Any kidney-related AE      |                           |                     |                                    |                                                   |             |                  |            |
| eGFR <30 ml/min per 1.73 r | n <sup>2</sup> 29         | 33                  | 175.1                              | 177.0                                             |             | 1.06 (0.64, 1.75 | ) 0.12     |
| eGFR ≥30 ml/min per 1.73 r | n <sup>2</sup> 261        | 355                 | 53.3                               | 75.3                                              | ы           | 0.69 (0.59, 0.81 | )          |
| AKI                        |                           |                     |                                    |                                                   |             |                  |            |
| eGFR <30 ml/min per 1.73 r | n <sup>2</sup> 9          | 10                  | 50.8                               | 52.0                                              | ⊢           | 1.04 (0.42, 2.55 | ) 0.70     |
| eGFR ≥30 ml/min per 1.73 r | n <sup>2</sup> 77         | 88                  | 15.7                               | 18.7                                              | ⊢╍┼┥        | 0.84 (0.62, 1.14 | .)         |
|                            |                           |                     |                                    |                                                   |             | -                |            |
|                            |                           |                     |                                    | 0.25                                              | 0.5 1.0 2.0 | 4.0              |            |
|                            |                           |                     |                                    |                                                   |             | ▼                |            |

Bakris et al., Clin J Am Soc Nephrol. 2020; 15: 1705

Favors Favors canagliflozin placebo

## Summary of HF outcomes with SGLT2i

### The effect of empagliflozin on causes of death: EMPA-REG

| Mortality causes    |                   | Placebo (N=2333) | EMPA (N=4687) | % RRR |
|---------------------|-------------------|------------------|---------------|-------|
| All-cause mortality |                   | 194 (8.3)        | 269 (5.7)     | 32    |
| CV death            |                   | 137 (5.9)        | 172 (3.7)     | 38    |
|                     | Sudden death      | 38 (1.6)         | 53 (1.1)      | 31    |
|                     | Worsening HF      | 19 (0.8)         | 11 (0.2)      | 75    |
|                     | Acute MI          | 11 (0.5)         | 15 (0.3)      |       |
|                     | Stroke            | 11 (0.5)         | 16 (0.3)      |       |
|                     | Cardiogenic shock | 3 (0.1)          | 3 (0.1)       |       |
|                     | Other             | 55 (2.4)         | 74 (1.6)      |       |
|                     | Not assessable    | 53 (2.3)         | 71 (1.5)      |       |
| Non-CV death        |                   | 57 (2.4)         | 97 (2.1)      |       |

Fitchett et al. JACC, 2016

## **COMORBIDITIES IN HFrEF SGLT2i RCTs**

|                                                          | EMPERO                           | EMPEROR-Reduced                  |                           |  |
|----------------------------------------------------------|----------------------------------|----------------------------------|---------------------------|--|
|                                                          | Empagliflozin<br>(n=1863)        | Placebo<br>(n=1867)              | Dapagliflozin<br>(n=2373) |  |
| Age (yr)                                                 | 67.2 ± 10.8                      | 66.5 ± 11.2                      | 66.2 ± 11.0               |  |
| Women (%)                                                | 437 (23.5)                       | 456 (24.4)                       | 564 (23.8)                |  |
| Diabetes mellitus (%)                                    | 927 (49.8)                       | 929 (49.8)                       | 993 (41.8)                |  |
| Ischemic cardiomyopathy (%)                              | 983 (52.8)                       | 946 (50.7)                       | 1316 (55.5%)              |  |
| NYHA functional class II (%)                             | 1399 (75.1)                      | 1401 (75.0)                      | 1606 (67.7%)              |  |
| LV ejection fraction (%)                                 | 27.7 ± 6.0<br>(72% ≤30%)         | 27.2 ± 6.1<br>(75% ≤30%)         | 31.2±6.7                  |  |
| NT-proBNP (median, IQR), pg/mL                           | 1887 (1077, 3429)<br>(79% ≥1000) | 1926 (1153, 3525)<br>(80% ≥1000) | 1428 (857-2655)           |  |
| Hospitalization for heart failure within 12 months       | 577 (31.0)                       | 574 (30.7)                       | 647 (27.3)                |  |
| Atrial fibrillation                                      | 664 (35.6)                       | 705 (37.8)                       | 916 (38.6)                |  |
| Glomerular filtration rate (ml/min/1.73 m <sup>2</sup> ) | $61.8 \pm 21.7$                  | 62.2 ± 21.5                      | 66.0 ± 19.6               |  |
| Treatment for heart failure                              |                                  |                                  |                           |  |
| RAS inhibitor without neprilysin inhibitor               | 1314 (70.5)                      | 1286 (68.9)                      | 2007 (84.6)               |  |
| RAS inhibitor with neprilysin inhibitor                  | 340 (18.3)                       | 387 (20.7)                       | 250 (10.5)                |  |
| Mineralocorticoid receptor antagonist                    | 1306 (70.1)                      | 1355 (72.6)                      | 1696 (71.5)               |  |
| Beta blocker                                             | 1765 (94.7)                      | 1768 (94.7)                      | 2278 (96.0)               |  |
| Implantable cardioverter-defibrillator                   | 578 (31.0)                       | 593 (31.8)                       | 622 (26.2%)               |  |
| Cardiac resynchronization therapy                        | 220 (11.8)                       | 222 (11.9)                       | 190 (8.0%)                |  |

## DAPA-HF McMurray et al., NEJM 2019;381:1995



## **EMPEROR-REDUCED**

- 3,730 participants with class II-IV HF and EF ≤40%
- In a median follow up of 16 months, the primary outcome occurred:
  - 361/1863 (19.4%) in empagliflozin
  - 462/1867 (24.7%) in placebo
- Similar efficacy in diabetic and nondiabetic participants
- The annual rate of decline in the eGFR was slower in the empagliflozin group than in the placebo group (-0.55 vs. 2.28 ml/min/1.73 m<sup>2</sup>, P<0.001)</li>

Packer M et al., NEJM 2020;383:1413



## **EMPEROR-PRESERVED**

- A RCT of 5988 patients with class II-IV HF and EF >40%
- N-terminal proBNP >300 pg/ mL or >900 pg/mL with Afib
- 49% with diabetes at baseline
- 51% with baseline Afib
- Mean baseline eGFR 61
- A median follow-up period of 26.2 months



Anker et al., N Engl J Med 2021; 385:1451

## Summary: SGLT2i

- Consistent renal and HF benefits (both HFrEF and HFpEF) across all RCTs
- Renal benefit (eGFR slope decline rate) takes ~12 months to become evident, where as the HF benefit is seen almost immediately (1-3 months).
- Renal composite endpoint: 34-39% RRR
  - eGFR dip (up to 30% drop from baseline) in acute phase (first 4 weeks) does not alter benefit
- HF hospitalization RRR by ~30% in HF trials
- The benefits are regardless of baseline ASCVD/HF status.
- Greater renal benefit in those with greater degree of proteinuria and CKD.
- Safety similar in those with CKD 3 and 4.

## **Effects of SGLT2 Inhibition on SAEs**

| Adverse Events by Studies                                                                                          | Events                               | Patients                       |                           | Relative risk (95% CI)                                                           | p value     |
|--------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------|---------------------------|----------------------------------------------------------------------------------|-------------|
| Total Serious Adverse Events<br>EMPA-REG <sup>®</sup><br>CANVAS <sup>11</sup><br>DECLARE-TIMI <sup>®</sup>         | 2777<br>3277<br>6025                 | 7020<br>10142<br>17160         |                           | 0.90 (0.83, 0.98)<br>0.93 (0.87, 1.00)<br>0.91 (0.87, 0.96)                      |             |
| <b>Increased risk</b>                                                                                              | with                                 | <u>n SGI</u>                   | <u>_T2i:</u>              |                                                                                  |             |
| DKA                                                                                                                |                                      |                                |                           |                                                                                  |             |
| <ul> <li>Mycotic geni</li> </ul>                                                                                   | tal i                                | infect                         | t <mark>ions</mark> (c    | only in DM), no                                                                  | ot affected |
| by baseline e                                                                                                      | GFF                                  | 2                              |                           |                                                                                  |             |
| <ul> <li>Volume deple</li> </ul>                                                                                   | etio                                 | n – Li                         | ikely a r                 | more concern                                                                     | in CKD      |
| (DAPA-CKD a                                                                                                        | and                                  | CRE                            | DENCE                     | )                                                                                |             |
| <ul> <li>Fracture (only</li> </ul>                                                                                 | / in (                               | CAN                            | /AS)                      |                                                                                  |             |
| CREDENCE <sup>10</sup><br>Overall Subtotal (I-squared = 20.3%, p                                                   | 135<br>D <sub>interaction</sub> = 0. | 4401<br>288)                   | 0                         | 0.98 (0.70, 1.37)<br><b>1.08 (0.98, 1.18)</b>                                    | 0.127       |
| Amputation<br>EMPA-REG <sup>®</sup><br>CANVAS <sup>11</sup><br>DECLARE-TIMI <sup>®</sup><br>CREDENCE <sup>10</sup> | 131<br>187<br>236<br>133             | 7020<br>10142<br>17160<br>4401 | *<br>*<br>*               | 1.01 (0.70, 1.44)<br>1.97 (1.41, 2.75)<br>1.09 (0.84, 1.40)<br>1.11 (0.79, 1.56) |             |
| Overall Subtotal (I-squared = 70.0%, p                                                                             | interaction = 0.0                    | 019)                           | <b>\$</b>                 | 1.23 (1.05, 1.44)                                                                | 0.01        |
|                                                                                                                    |                                      | .1 .2                          | 5 .5 1 2 4 1 <sup>/</sup> | 0                                                                                |             |

Fixed effect models with inverse variance weighting. P values have not been adjusted for multiple comparisons. Arnott et al. JAHA 2020

# General strategy for prescribing SGLT2i

- Avoid initiation of antihypertensives or diuretics or upward dose titration or diuretics at the same time as starting SGLT2i.
- Monitor BP/weight
- If Cr increase ≥25%, hold the drug and repeat Cr in 1 week and rechallenge when stable.

### HOLD for:

- Pregnancy
- DKA follow serum ketone levels
- Fournier's gangrene
- Acute illness/perioperative period

# Who may have higher risk with SGLT2i therapy

- T2D with DKA
- frequent genital tract infection
- Patients with urinary catheterization
- dynamic volume status
- PKD + immunosuppression (until data available)
- T1DM??

# Cardiorenal effects of glucagon-like peptide-1 receptor agonists (GLP-1RA)

## **Pleiotropic effects of GLP-1 or GLP-1R agonists**

#### Glucagon-like peptide-1 (GLP-1):

- A peptide hormone produced in the intestine in response to meal intake
- Enhances insulin secretion and reduces glucagon secretion, thus limiting hepatic glucose output
- GLP-1 receptor (GLP-1R) is widely expressed in a variety of tissues (gut, pancreas, hypothalamus, CV system, kidney)
- Rapidly degraded by dipeptidyl peptidase IV (DPP-IV)
- GLP-1 receptor agonists prolong the effects of GLP-1.



## **GLP-1 Receptor Agonists**

|                               | Short-Acting                                  | Long-Acting                                                                                           |
|-------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------|
| FDA-approved drugs            | Exenatide (Byetta)<br>Lixisenatide (Adlyxin)  | Liraglutide (Victoza)<br>Exenatide-LAR (Bydureon)<br>Albiglutide (Tanzeum)<br>Dulaglutide (Trulicity) |
| Half-life                     | 2–5 h                                         | 12 h-several days                                                                                     |
| Fasting BG                    | Modest reduction                              | Strong reduction                                                                                      |
| A1C                           | Modest reduction                              | Strong reduction                                                                                      |
| Postprandial<br>hyperglycemia | Strong reduction                              | Modest reduction                                                                                      |
| Gastric emptying rate         | Deceleration                                  | No effect                                                                                             |
| Blood pressure                | Reduction                                     | Reduction                                                                                             |
| Weight reduction              | 1–5 kg                                        | 2–5 kg                                                                                                |
| Nausea                        | 20%– 50%; slowly<br>attenuates (weeks/months) | 20%–40%; quickly attenuates<br>(≅4 −8 weeks)                                                          |
| Heart rate                    | No/small increase (0-2 bpm)                   | Moderate increase (2-5 bpm)                                                                           |
|                               |                                               |                                                                                                       |

Meier JJ. Nat Rev Endocrinol. 2012;8(12):728-742. Lund A, et al. Eur J Intern Med. 2014;25(5):407-414.





#### Effects of treatment with GLP-1R agonists and DPP-4 inhibitors on CV risk factors as described in RCT

Nauck et al., Circulation. 2017;136:849
#### **GLP-1RA** have moderate benefits on MACE and CV mortality

#### Primary outcome:

- 3-point MACE CV death, nonfatal MI and nonfatal stroke
- 4-point MACE also included hospitalization for unstable angina for the ELIXA trial only



Giugliano D et al., Cardiovasc Diabetol. 2021;20:189

#### The benefit of GLP-1RA on MACE limited to those with history of CVD

|                                                                | MACE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HR                   | Weight |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------|
| History of CVD                                                 | Favours GLP-1RA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | with 95% CI          | (%)    |
| HISTORY OF CVD                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |        |
| LEADER                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.83 [ 0.74, 0.93]   | 20.87  |
| SUSTAIN-6                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.72 [ 0.55, 0.94]   | 5.78   |
| EXSCEL                                                         | - Hereita | 0.90 [ 0.81, 0.99]   | 24.07  |
| REWIND                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.87 [ 0.74, 1.02]   | 13.34  |
| PIONEER 6                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.83 [ 0.58, 1.18]   | 3.54   |
| AMPLITUDE-O                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.71 [ 0.57, 0.89]   | 7.62   |
| Heterogeneity: $\tau^2 = 0.00$ , $I^2 = 6.12\%$ , $H^2 = 1.07$ | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.84 [ 0.79, 0.90]   |        |
| Test of $\theta_i = \theta_i$ : Q(5) = 5.35, p = 0.37          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |        |
| No history of CVD                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |        |
| LEADER                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.20 [ 0.86, 1.67]   | 3.93   |
| SUSTAIN-6                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | → 1.00 [ 0.41, 2.44] | 0.58   |
| EXSCEL                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.99 [ 0.77, 1.28]   | 6.34   |
| REWIND                                                         | -=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.87 [ 0.74, 1.02]   | 13.34  |
| PIONEER 6                                                      | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.51 [ 0.15, 1.71]   | 0.32   |
| AMPLITUDE-O                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | → 1.71 [ 0.48, 6.08] | 0.29   |
| Heterogeneity: $\tau^2$ = 0.00, $I^2$ = 0.00%, $H^2$ = 1.00    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.94 [ 0.83, 1.06]   |        |
| Test of $\theta_i = \theta_j$ : Q(5) = 4.99, p = 0.42          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |        |
|                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |        |
|                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |        |
| Test of group differences: $Q_b(1) = 2.33$ , p = 0.13          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |        |
|                                                                | 0.25 0.50 0.75 1.00 1.50 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.00                 |        |
| Random-effects empirical Bayes model                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |        |

Giugliano D et al., Cardiovasc Diabetol. 2021;20:189

## **GLP-1RA: Renal outcomes**

#### Renal composite endpoint:

- time to new-onset macroalbuminuria
- sustained decline in eGFR of ≥30% from baseline
- doubling of serum creatinine
- ESRD/chronic renal replacement therapy and/or renal death

In 6 CVOTs, GLP1-RA reduced the risk of the broad composite kidney outcome by 17% (HR = 0.83), which was driven by a reduction in macroalbuminuria only (HR = 0.74)

![](_page_38_Figure_7.jpeg)

Giugliano D et al., Cardiovasc Diabetol. 2021;20:189

## **Use of GLP-1 RA in CKD**

 There is limited experience with most GLP-1 receptor agonists in patients with severe renal impairment (eGFR 15 to 29 mL/min/1.73 m<sup>2</sup>).

#### LONG-ACTING AGENTS

- Liraglutide (Victoza), dulaglutide (Trulicity), and semaglutide (Ozembic):
  - Kidney and CV protective benefits as well as <u>documented safety</u> in patients with CKD 4 (eGFR 15-29 mL/min/1.73 m<sup>2</sup>) and thus preferred agents for CKD 4.
  - Use in CKD 4 → need to monitor for signs and symptoms of dehydration due to nausea or satiety to reduce the risk of pre-renal AKI
  - Not excreted by the kidneys  $\rightarrow$  dose reductions not necessary in CKD
- **Exenatide once weekly** AVOID in patients with eGFR <45 mL/min/1.73 m<sup>2</sup>.

#### SHORT-ACTING AGENTS – avoid in eGFR <30

- Lixisenatide:
  - The clinical outcomes are not affected by mild (eGFR 60 to 89 mL/min/1.73 m<sup>2</sup>) or moderate (eGFR 30 to 59 mL/min/1.73 m<sup>2</sup>) CKD.
  - Paucity of data in patients with eGFR 15 to 29 mL/min/1.73 m<sup>2</sup>.
  - Lixisenatide is presumed to be eliminated by the kidneys with increased exposure in CKD.
  - Need to monitor closely for gastrointestinal adverse effects, which may increase risk of AKI.

|        | KDIGO 2020 guideline        |                  | : KI (2020) 98:S1                                                           | Primary outcome                                                                                                      |                                 | Kidney outcomes        |                        |                                  |  |  |  |
|--------|-----------------------------|------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------|------------------------|----------------------------------|--|--|--|
|        | Drug                        | Trial            | Kidney-related<br>eligibility criteria                                      | Primary outcome                                                                                                      | Effect on<br>primary<br>outcome | Albuminuria            | GFR<br>loss            | Adverse effects                  |  |  |  |
|        | SGLT2 inhibitor             | S                |                                                                             |                                                                                                                      | SGLT2 inhibitors                |                        |                        |                                  |  |  |  |
|        | Empagliflozin               | EMPA-REG OUTCOME | eGFR $\geq$ 30 ml/min per 1.73 m <sup>2</sup>                               | MACE                                                                                                                 | ↓                               | ↓↓                     | $\downarrow\downarrow$ | Genital mycotic infections, DKA  |  |  |  |
|        | Canagliflozin CANVAS trials |                  | eGFR ≥30 ml/min per 1.73 m²                                                 | MACE                                                                                                                 | $\downarrow$                    | $\downarrow\downarrow$ | $\downarrow\downarrow$ | Genital mycotic infections, DKA, |  |  |  |
|        |                             | CREDENCE         | ACR >300 mg/g [30 mg/mmol] and<br>eGFR 30–90 ml/min per 1.73 m <sup>2</sup> | Progression of CKD <sup>b</sup>                                                                                      | $\downarrow\downarrow$          | ↓↓                     | ††                     | Genital mycotic infections, DKA  |  |  |  |
|        | Dapagliflozin               | DECLARE-TIMI 58  | CrCl ≥60 ml/min                                                             | Dual primary outcomes:<br>MACE and the composite of<br>hospitalization for heart<br>failure or CV death <sup>c</sup> | ↔/↓                             | Ļ                      | ††                     | Genital mycotic infections, DKA  |  |  |  |
|        | GLP-1 receptor              | agonists         |                                                                             | GLP-1 receptor agonists                                                                                              |                                 |                        |                        |                                  |  |  |  |
|        | Lixisenatide                | ELIXA            | eGFR $\geq$ 30 ml/min per 1.73 m <sup>2</sup>                               | MACE                                                                                                                 | $\leftrightarrow$               | $\downarrow$           | $\leftrightarrow$      | None notable                     |  |  |  |
|        | Liraglutide                 | LEADER           | eGFR ≥15 ml/min per 1.73 m²                                                 | MACE MACE                                                                                                            | ↓                               | $\downarrow$           | $\leftrightarrow$      | GI                               |  |  |  |
| Long-  | Semaglutide                 | SUSTAIN-6        | Patients treated with dialysis excluded                                     | MACE ~12%                                                                                                            | ↓                               | 11                     | NA                     | GI                               |  |  |  |
| acting |                             | PIONEER 6        | eGFR ≥30 ml/min per 1.73 m²                                                 |                                                                                                                      | $\leftrightarrow$               | NA                     | NA                     | GI                               |  |  |  |
|        | Exenatide                   | EXSCEL           | eGFR ≥30 ml/min per 1.73 m <sup>2</sup>                                     | MACE RRR                                                                                                             | $\leftrightarrow$               | $\leftrightarrow$      | $\leftrightarrow$      | None notable                     |  |  |  |
| 1175   | Albiglutide                 | HARMONY          | eGFR ≥30 ml/min per 1.73 m²                                                 | MACE                                                                                                                 | Ļ                               | $\leftrightarrow$      | NA                     | Injection site reactions         |  |  |  |
|        | Dulaglutide                 | REWIND           | eGFR ≥15 ml/min per 1.73 m²                                                 | MACE                                                                                                                 | ↓                               | $\downarrow$           | Ļ                      | GI                               |  |  |  |
|        | DPP-4 inhibitor             | s                |                                                                             | DPP4 inhibitors                                                                                                      |                                 |                        |                        |                                  |  |  |  |
|        | Saxagliptin                 | SAVOR-TIMI 53    | eGFR ≥15 ml/min per 1.73 m²                                                 | MACE                                                                                                                 | $\leftrightarrow$               | Ļ                      | $\leftrightarrow$      | ↑HF, hypoglycemic<br>events      |  |  |  |
|        | Alogliptin                  | EXAMINE          | Patients treated with dialysis excluded                                     | MACE                                                                                                                 | $\leftrightarrow$               | NA                     | NA                     | None notable                     |  |  |  |
|        | Sitagliptin                 | TECOS            | eGFR $\geq$ 30 ml/min per 1.73 m <sup>2</sup>                               | MACE                                                                                                                 | $\leftrightarrow$               | NA                     | NA                     | None notable                     |  |  |  |
|        | Linagliptin                 | CARMELINA        | eGFR ≥15 ml/min per 1.73 m <sup>2</sup>                                     | Progression of CKD <sup>b</sup>                                                                                      | $\leftrightarrow$               | $\downarrow$           | $\leftrightarrow$      | None notable                     |  |  |  |

Cardiorenal effects of mineralocorticoid receptor antagonists (MRA)

#### The deleterious effects of aldosterone/MR activation in heart and kidneys

![](_page_42_Figure_1.jpeg)

## Direct deleterious effects of aldosterone in the heart include development of:

- myocardial hypertrophy
- ventricular remodeling
- proarrhythmogenic effects
- myocardial ischemia
- reduced coronary blood flow
- myocardial injury

## The effects of aldosterone on the kidneys include:

- glomerular hypertrophy
- glomerulosclerosis
- proteinuria
- reduced renal blood flow
- renal injury

Bauersachs J et al., Hypertension 2015;65:257

# Milestones in the development of MRA for treatment of HF and diabetic kidney disease

![](_page_43_Figure_1.jpeg)

D'Marco L et al., 2021

## A double-blind RCT on the Effect of Spironolactone in DM and non-DM patients with persistent proteinuria

![](_page_44_Figure_1.jpeg)

Chrysostomou A et al., CJASN 2006, 1:256

### **CV** outcomes in clinical trials with MRA

| Trial           | Patient group                    | N    | MRA            | Outcomes                                                                                       |                       |  |
|-----------------|----------------------------------|------|----------------|------------------------------------------------------------------------------------------------|-----------------------|--|
| RALES           | Severe HF, EF ≤35%, Cr ≤         | 822  | Spironolactone | 1. All-cause mortality                                                                         | ↓ 30% RRR             |  |
|                 | 2.5, on ACEI/diuretics           |      |                | 2. HF hospitalization                                                                          | ↓ 35% RRR             |  |
|                 | EF <40% and HF following         | 6632 | Eplerenone     | 1. All-cause mortality                                                                         | ↓ 15% RRR             |  |
| EPHESUS         | MI on optimal medical therapy    |      |                | 2. Death from CV cause or<br>CV hospitalization                                                | ↓ 13% RRR             |  |
| EMPHASIS-<br>HF | Mild HF (NYHA II) and EF<br>≤35% | 2737 | Eplerenone     | Composite of death from CV causes and HF hospitalization                                       | ↓ 37% RRR             |  |
| TOPCAT          | Symptomatic HF and<br>EF ≥45%    | 3445 | Spironolactone | Composite of death from CV<br>causes, aborted cardiac<br>arrest, and hospitalization for<br>HF | ↓ 11% RRR<br>(P=0.14) |  |

# The publication of RALES associated with abrupt increases in the rate of prescriptions for spironolactone and in hyperkalemia-associated morbidity and mortality

![](_page_46_Figure_1.jpeg)

Juurlink DN et al., NEJM 2004; 351:543

|                                             | Steroida         | al MRAs          | Finerenone    |                                                                                                 |  |
|---------------------------------------------|------------------|------------------|---------------|-------------------------------------------------------------------------------------------------|--|
| Kintscher U et al.,<br>2021 British J Pharm | Spironolactone   | Eplerenone       | Finerenone    |                                                                                                 |  |
| Structural properties                       | Flat (steroidal) | Flat (steroidal) | Bulky (non-st | eroidal)                                                                                        |  |
| Potency to MR                               | +++              | +                | +++           |                                                                                                 |  |
| Selectivity to MR                           | +                | ++               | +++           | >500-fold more selective<br>for the MR than steroid<br>receptors within the<br>same superfamily |  |
| CNS penetration                             | +                | +                | _             |                                                                                                 |  |
| Sexual side effects                         | ++               | (+)              |               | <ul> <li>(glucocorticoid, androgen,<br/>progesterone)</li> </ul>                                |  |
| Half-life                                   | >20 h**          | 4–6 h**          | 2–3 h*        |                                                                                                 |  |
| Active metabolites                          | ++               | _                | _             |                                                                                                 |  |
| Effect on BP                                | ect on BP +++    |                  | +             |                                                                                                 |  |

![](_page_48_Figure_0.jpeg)

Addition of finerenone, a non-steroidal selective MRA, further improves renal outcomes: FIDELIO-DKD

#### **FIDELIO-DKD** (N=5674):

- T2DM with CKD on ACEI/ ARB,
- mean eGFR 44 (25 <75),</li>
- median albuminuria = 852 mg/g (300-5000)
- Mean f/u 2.6 yrs

Bakris GL et al., NEJM 2020;383:2219

![](_page_49_Figure_0.jpeg)

#### Effect of finerenone on proteinuria and hyperkalemia in diabetic CKD treated with ACEI/ARB

- Overall hyperkalemia-related adverse events were twice as frequent with finerenone as with placebo (18.3% and 9.0%, respectively)
- a maximal K level difference of 0.23 mmol per liter was observed at month 4.
- The incidences of serum K levels of more than 5.5 mmol/L and more than 6.0 mmol/L:
  - Finerenone: 21.7% and 4.5%
  - Placebo: 9.8% and 1.4%
- Discontinuation of the trial regimen due to hyperkalemia was infrequent in finerenone group (2.3%) and <u>markedly lower</u> than in trials of dual RAS blockade (8% with spironolactone in RALES, 4.8% with combination therapy with a direct renin inhibitor and an ACE inhibitor or ARB and 9.2% with dual ACE inhibitor + ARB therapy).
- Changes in mean SBP from baseline to month 1 and 12 were -3.0 and -2.1 mm Hg.

Bakris GL et al., NEJM 2020;383:2219

## Finerenone reduces risk of incident HF in patients with CKD and T2DM: the FIGARO-DKD Trial

![](_page_50_Figure_1.jpeg)

Filippatos G et all, Circulation. 2022, 145: 437

#### FIGARO-DKD (N=7437):

- T2DM with albuminuria treated with ACEI/ARB
- 571/7437 (8%) with hx of HF
- Mean eGFR ~67
- mean albuminuria ~300 mg/g

FIGARO-DKD is the first study to show that a MRA, specifically the selective, nonsteroidal MRA finerenone, may prevent the development of HF in patients with CKD and T2DM

![](_page_51_Picture_0.jpeg)

- Steroidal MRAs (spironolactone, eplerenone) have less selectivity to mineralocorticoid receptor and also have more renal distribution and are thus associated with greater risk for side effects (i.e. gynecomastia, amenorrhea, hyperkalemia).
- Non-steroidal MRA (finerenone) is >500 times more selective for MR, also have equal distribution in heart and kidney, with less risk for hyperkalemia.
- Finerenone has much less BP-lowering effect (2-3 mm Hg vs 10-20 mm Hg by spironolactone)
- Finerenone significantly lowers composite renal endpoint by 18% compared to standard therapy and prevents incident HF.

#### **Overall summary**

#### SGLT2i – "most potent overall protection for CKD and HF in DM and non-DM"

- $\sim$  12% risk reduction in MACE
- $\sim$  30% risk reduction in HF hospitalization (within 1-3 months)
- 30-40% risk reduction in composite renal endpoints
- The renal benefits of SGLT2i are greatest in those with lower eGFR and greater proteinuria, regardless of DM status.

#### GLP-1RA (Long-acting formulations) – "weight and MACE reduction in T2DM"

- Significant weight reduction
- Modest benefit on reduction of MACE, CV mortality, and proteinuria. GLP-1RA have not shown significant benefit on HF hospitalization or hard renal endpoints (i.e. progression to ESRD or doubling of Cr).
- Liraglutide, semaglutide, and dulaglutide may be cautiously used in CKD 4.
- Not been studied in non-DM populations for CV or renal outcomes.

#### • Finerenone: "prevent ESRD and HF with smaller effects on SBP and potassium"

- lower risk of severe hyperkalemia, decreased hypotensive effect (
   SBP by 2-3 mm Hg)
- significantly prevent incident HF in T2DM patients without symptomatic HF
- Reduce composite renal endpoints by 18% on top of ACEI/ARB

#### Decision algorithm for prescribing SGLT2i and GLP-1 RA to optimize cardiorenal protection in diabetic CKD

- Both SGLT2i and GLP-1 RA prevent progression to macroalbuminuria (by 20-30%) and reduce albuminuria (30-40%) in those with albuminuria ≥300 mg/g.
- Addition of finerenone to ACEI/ARB provides further 31% reduction of proteinuria and renal survival benefit.
- Currently, there is no head-to-head study comparing kidney failure protection between SGLT2i and GLP-1 RA. The recommendation is on the basis of the overall strength of the placebo-controlled trials of SGLT2i and GLP-1 RA.
- No data on the efficacy of GLP-1 RA or finerenone in non-diabetic CKD

Li et al., CJASN 2020 (15) 1678

![](_page_53_Figure_6.jpeg)

![](_page_54_Picture_0.jpeg)

## SGLT2i trials by baseline eGFR and albuminuria

![](_page_55_Figure_1.jpeg)

Adopted from Kluger et al., Cardiovasc Diabetology 2019

## **Studies on SGLT2 inhibitors and LV function**

| Author               | Drug                | Cohort                              | Imaging                               | Outcomes                                                                                                                                      |
|----------------------|---------------------|-------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Verma et al.<br>2016 | Empa                | 10 pts with T2DM and CVD            | TTE before and 3 months after         | <ul> <li>Improved LV diastolic fx</li> <li>Reduced LV mass index</li> </ul>                                                                   |
| Matsutani et al.     | Cana                | 37 with T2DM<br>with CVD or<br>RFs  | TTE before and 3 months after         | <ul> <li>Improved LV diastolic fx</li> <li>Reduced LV mass index</li> </ul>                                                                   |
| Soga et al.          | Dapa                | 53 with T2DM &<br>HFrEF or<br>HFpEF | TTE before and 6<br>months after      | <ul> <li>Improved LV diastolic fx</li> <li>Reduced LV mass index, LA volume index<br/>Improved LVEF</li> </ul>                                |
| Sakai et al.         | Empa/<br>Luseo/Tofo | 59/63/62 T2DM<br>with HFpEF         | TTE before and 3 months after         | Improved LV diastolic fx     according to the E/A and E/e' ratios                                                                             |
| Verma et al.         | Empa vs.<br>placebo | 97 T2DM and CVD/48 placebo          | Cardiac MRI before and 6 months after | <ul> <li>Improved LV mass index</li> <li>No difference in LV EF and LV end-systolic vol</li> </ul>                                            |
| Cohen et al.         | Empa vs.<br>placebo | 25 T2DM (8/25<br>placebo)           | Cardiac MRI before and 6 months after | <ul> <li>Reduced LV end-diastolic volume</li> <li>No difference in LV mass, LV EF, atrial volumes, and markers of cardiac fibrosis</li> </ul> |

### SGLT2is may delay ESKD by 15 years

![](_page_57_Figure_1.jpeg)

Meraz-Munoz et al., Kidney360:2021, 2 (6) 1042

### **Nephroprotective effects of GLP-1 receptor agonists**

![](_page_58_Figure_1.jpeg)

Mosterd CM et al., J Nephrol 2020, 33:965

## Finerenone associated with less increase in serum K<sup>+</sup> compared to steroidal MRA eplerenone: ARTS-HF study

Mean change in serum [K<sup>+</sup>] from baseline to Day 90 in patients with worsening chronic HFrEF

![](_page_59_Figure_2.jpeg)

- A phase 2b, RCT of 1066 patients with worsening HFrEF (EF ≤ 40%) requiring hospitalization with IV diuretics
- T2DM with eGFR >30 or no DM with eGFR 30-60
- Mean change from baseline to Day 90 in serum potassium concentration was greater in the eplerenone group (+0.26 mmol/L) than in each of the finerenone dose groups (+0.12–0.20 mmol/L)

![](_page_60_Figure_0.jpeg)

### GLP-1 RA in T2DM: Review of CV Outcome Trials

Renal composite endpoint: typically composed of the following:

- time to new-onset macroalbuminuria
- sustained decline in eGFR of ≥30% from baseline
- doubling of serum creatinine
- ESRD/chronic renal replacement therapy and/or renal death

Varin EM et al., Can J Diabetes 2019, 44:68

## NHE-dependent pathways that may underlie the interplay of the pathogenesis of HF and diabetes

![](_page_61_Figure_1.jpeg)

Packer, Circulation 2017

## Meta-analysis of SGLT2i trials on HF hospitalization and CV death stratified by history of HF

The reduction in the composite of CV death or hospitalization for HF was not statistically different in patients with (HR 0.71 [95% CI 0.61–0.84]) or without (0.79 [0.71–0.88]) a history of HF at baseline.

|                                                                    | Patients           |             | Events Events per 1000<br>patient-years |             | Weight HR<br>(%) |            | HR       | HR (95% CI)     |                  |
|--------------------------------------------------------------------|--------------------|-------------|-----------------------------------------|-------------|------------------|------------|----------|-----------------|------------------|
|                                                                    | Treatment (n)      | Placebo (n) |                                         | Treatment   | Placebo          |            |          |                 |                  |
| Patients with history                                              | of heart failure   |             |                                         |             |                  |            |          |                 |                  |
| EMPA-REG OUTCOME                                                   | 462                | 244         | 124                                     | 63.6        | 85.5             | 23.6       | <b></b>  | +               | 0.72 (0.50–1.04) |
| CANVAS Program                                                     | 803                | 658         | 203                                     | 35.4        | 56.8             | 34.1       | <b>_</b> |                 | 0.61 (0.46–0.80) |
| DECLARE-TIMI 58                                                    | 852                | 872         | 314                                     | 45·1        | 55·5             | 42.4       |          | _               | 0.79 (0.63–0.99) |
| Fixed effects model for history of heart failure (p<0.0001)        |                    |             |                                         |             |                  |            |          |                 |                  |
| Patients with no histo                                             | ory of heart failu | ire         |                                         |             |                  |            |          |                 |                  |
| EMPA-REG OUTCOME                                                   | 4225               | 2089        | 339                                     | 15.5        | 24.9             | 30.0       | <b></b>  |                 | 0.63 (0.51–0.78) |
| CANVAS Program                                                     | 4992               | 3689        | 449                                     | 13.6        | 15.2             | 32.4       |          | +               | 0.87 (0.72–1.06) |
| DECLARE-TIMI 58                                                    | 7730               | 7706        | 599                                     | 8.9         | 10.5             | 37.6       |          | -               | 0.84 (0.72–0.99) |
| Fixed effects model for no history of heart failure ( $p<0.0001$ ) |                    |             |                                         |             |                  |            |          |                 | 0.79 (0.71-0.88) |
|                                                                    |                    |             |                                         |             |                  | 0.35<br>F  | 0.50 1   | Favours placebo |                  |
|                                                                    |                    |             | Zeln                                    | iker et al. | Lancet           | 2019 (393) | ):31=39  | ,               |                  |

#### **HF THERAPEUTICS RE-ORGANIZED**

Fast/rapid sequencing of HF therapies as an alternative to conventional sequencing?

![](_page_63_Figure_2.jpeg)

John J.V. McMurray and Milton Packer. Circulation. How Should We Sequence the Treatments for Heart Failure and a Reduced Ejection Fraction? Circulation 2021;143: 875-877, DOI: (10.1161/CIRCULATIONAHA.120.052926)

## Cardiovascular outcomes from the key CV outcome trials with SGLT2i and GLP-1R agonists versus placebo

![](_page_64_Figure_1.jpeg)

![](_page_65_Figure_0.jpeg)

# CV outcomes trials of GLP-1RA, SGLT2i, and DPP4i

Nauck and Meier, Eur J Endocrinol (2019) 181:R21

Brown et al., Lancet 2021, 398:262

### **GLP-1 RA in T2DM: Review of CV Outcome Trials**

![](_page_66_Figure_1.jpeg)

#### Primary outcome:

- 3-point MACE = CV death, nonfatal MI and nonfatal stroke
- 4-point MACE also included hospitalization for unstable angina for the ELIXA trial only

Varin EM et al., Can J Diabetes 2019, 44:68

# **Exploratory renal outcomes and their individual components in GLP-1RA trials**

![](_page_67_Figure_1.jpeg)

![](_page_68_Figure_0.jpeg)

#### Cumulative incidence of CV events associated with SGLT2i compared with DPP4i

- A Scandinavian cohort study from 2013 to 2016.
- 20,983 new users of SGLT2i and 20,983 new users of dipeptidyl peptidase 4 (DPP4) inhibitors.
- 19% with prior CVD, 6% with prior HF, 5% with prior CKD
- Ages 35-84, matched by age, sex, history of major CVD and propensity score.
- SGLT2i arm:
  - 83% dapagliflozin,
  - 16% empagliflozin,
  - 1% canagliflozin.
- SGLT2i, compared to DPP4i, associated with a 34% reduced risk of HF and a 20% reduced risk of the secondary outcome any cause death.

<u>BMJ</u>. 2019; 366: I4772

## **CV outcomes in clinical trials with MRA**

**CENTRAL ILLUSTRATION:** MRA Treatment Effect on the Overall HF Population ≥75 Years of Age (Primary Outcome of CV Death or HF Hospitalization)

![](_page_69_Figure_2.jpeg)

Ferreira, J.P. et al. J Am Coll Cardiol HF. 2019;7(12):1012-21.

### Severe mortality risk in pre-dialysis CKD

![](_page_70_Figure_1.jpeg)

## A summary of possible mechanisms of cardiorenal protection associated with <u>SGLT2i</u>

![](_page_71_Figure_1.jpeg)

Diabetologia. 2017; 60:215-225
## **Renal effects of GLP-1**



Muskiet MH et al., Nature Reviews Nephrol 2017, 13:605

Nature Reviews | Nephrology

| Renal risk<br>factor          | GLP-1RA                          | DPP-4<br>inhibitor               | Putative GLP-1-mediated mechanisms                                                                                                                                                                                                                                                                                                                        | Putative GLP-1-independent<br>mechanisms of DPP-4<br>inhibitors                                                                                                     |
|-------------------------------|----------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Obesity                       | Decrease                         | Neutral<br>effect                | ↓ Appetite (direct effect on CNS or via vagal afferents, ↓ GEE*<br>and ↑ nausea)<br>↑ Energy expenditure <sup>35</sup> ?                                                                                                                                                                                                                                  | Effect possibly counteracted<br>by↑PYY (1–36) and<br>↓PYY (3–36) <sup>257,258‡</sup>                                                                                |
|                               |                                  |                                  | 1 Natriuresis and/or diuresis?                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                     |
| Blood<br>pressure             | Decrease                         | Decrease<br>or neutral<br>effect | ↓ Body weight<br>↑ Endothelial independent vasodilation <sup>259,260</sup> ?                                                                                                                                                                                                                                                                              | ↑Natriuresis (↑ SDF1α <sup>119</sup> ,<br>↓DPP-4/NHE3 complex <sup>262</sup> ?,<br>↑BNP <sup>263</sup> )                                                            |
|                               |                                  |                                  | T Natriuresis <sup>261</sup> <sup>9</sup><br>↓ Intestinal sodium reabsorption <sup>98</sup> ?                                                                                                                                                                                                                                                             | ↑ Vasodilation (↑ BNP <sup>263</sup> ,<br>↑ bradykinin)                                                                                                             |
|                               |                                  |                                  | ↓ Sodium intake (direct effect on CNS)?<br>↓ RAAS activity <sup>87,127</sup> ?<br>↑ ANP <sup>130</sup> ?                                                                                                                                                                                                                                                  | Effects possibly counteracted<br>by ↑ substance P (↑ SNS activity)<br>and ↑ NPY (potentiates SNS<br>activity) during concomitant ACE<br>inhibition <sup>127  </sup> |
| Dyslipidaemia                 | Decrease                         | Neutral<br>effect                | <ul> <li>↓ Body weight</li> <li>↓ Intestinal lipid uptake (partly by ↓ GEE*)</li> <li>↓ Hepatic lipoprotein synthesis and secretion</li> <li>↑ Insulin sensitivity (partly by ↓ body weight)</li> <li>↑ Insulin and ↓ glucagon</li> <li>↑ Triglyceride uptake in white adipose tissue</li> <li>↑ Brown adipose tissue activation<sup>169</sup></li> </ul> | Effects possibly counteracted<br>by factors related to steroid<br>metabolism <sup>264</sup>                                                                         |
| Inflammation<br>and fibrosis  | Decrease                         | Decrease                         | <ul> <li>↓ Renal ROS production (cAMP and PKA)<sup>102,179</sup></li> <li>↓ AGE-RAGE-mediated renal ROS production (cAMP)<sup>181,265,266</sup></li> <li>↓ Angiotensin II-induced renal ROS production (PKC)<sup>182,183</sup></li> <li>↑ Adiponectin (reduces podocyte inflammation; PKA in adipocytes)<sup>267</sup></li> </ul>                         | ↑SDF1α <sup>119,268,269</sup><br>↓Profibrotic endothelial-to-<br>mesenchymaltransition <sup>185,186</sup> 9                                                         |
| Glomerular<br>hyperfiltration | Decrease<br>or neutral<br>effect | Neutral<br>effect                | ↑ Tubuloglomerular feedback (by↓ NHE3 activity)<br>↓ Postprandial glucagon (particularly short-acting GLP-1RA) <sup>70,71,90</sup> ?<br>↓ Body weight <sup>90</sup> ?<br>↓ GEE* (postprandial hyperfiltration) <sup>90</sup> ?<br>↓ RAAS activity <sup>87,127</sup> ?                                                                                     | ↑SDF1α <sup>119</sup> ?                                                                                                                                             |

#### Table 2 | Glucose-independent effects of incretin-based therapies on renal risk factors in type 2 diabetes mellitus

### Muskiet MH et al., Nature Reviews Nephrol 2017, 13:605

ACE, ang iotensin-converting enzyme; AGE, advanced glycation end products; BNP, brain natriuretic peptide; CNS, central nervous system; DPP-4, dipeptidyl peptidase 4; GEE, gastric emptying rate; GLP-1, glucagon-like peptide 1; GLP-1RA, GLP-1 receptor agonist; NHE3, sodium–hydrogen exchanger isoform 3; PKA, protein kinase A; PKC, protein kinase C; PYY, peptide YY; RAAS, renin–ang iotensin–aldosterone system; RAGE, receptor for AGE; ROS, reactive oxygen species, SDF1a, stromal cell-derived factor 1a. \*GEE reduction is subject to tachyphylaxis after prolonged treatment with long-acting GLP-1RA; however, loss of body weight continues<sup>35,270</sup>. \*DPP-4 inhibition could blunt GLP-1-mediated effects on central regulation of satiation by concomitantly increasing levels of PYY (1–36), which decrease appetite. <sup>§</sup>Natriuresis seems to only be sustained with short-acting GLP-1RAs<sup>116,117</sup>; initial natriuresis with long-acting GLP-1RA may result in a new steady state with lower extracellular volume and/or lower sodium stores in the glycocalyx. <sup>II</sup>An ongoing trial is investigating this hypothesis in detail<sup>223</sup>. <sup>T</sup>This effect could be drug-specific as linagliptin, but not sitagliptin, reduces endothelial-to-mesenchymal transition<sup>271</sup>.

# Glucagon-like peptide-1 receptor (GLP-1R) activation and renal autoregulatory pathways in the healthy and diabetic kidney



### **CENTRAL ILLUSTRATION:** Treatment Effect of Sacubitril/Valsartan Relative to Valsartan According to Background MRA Therapy



### CV and Renal Outcomes of MRA Use in PARAGON-HF

Jering KS et al., J Am Coll Cardiol HF. 2021 Jan, 9 (1) 13–24