What's New in My Specialty? Cystic Fibrosis

Theodore G. Liou, M.D. ted.liou@utah.edu Associate Professor of Internal Medicine Director, Intermountain CF Adult Care Center Division of Respiratory, Critical Care and Occupational Pulmonary Medicine University of Utah

Disclosures

Research Funding: CF Foundation, NIH/NHLBI, Margolis Family Foundation of Utah.

- *Clinical Study Funding*: CFF, Genentech, Gilead, Novartis, Savara and Vertex.
- Current Memberships: Chest Editorial Board, CFF Clinical Research Study Review

Consulting: Gehrson Lehman Group, Genentech and Vertex

Cystic Fibrosis

Autosomal recessive multi-system disease that requires cross-disciplinary care
First genetic disease to be sequenced
More than 1900 disease causing mutations
About 25,000 living patients
Over 10 million carriers in the US

CF Transmembrane Regulator (CFTR) Protein

CFTR mutations lead to absent or decreased epithelial chloride transport Biochemical defect leads to thick mucus F508del is the most common mutation G551D, a missense mutation, leads to decreased chloride transport Disease causing mutations shorten life

Early Death in CF

Median age at death in 1938 was 6 months Current median age at death is 27 years Projected median age "The expectation of life at birth" 40 years (2014)

Causes of Death

Lung disease:	68%
Lung transplant related:	12%
Liver Disease:	3%
Suicide:	3%
Other:	8%

Improved survival

Better treatments Organized centers for treatment Better recognition and diagnosis of disease

Utah Neonatal Screening

Immunoreactive Trypsinogen DNA screen for most common mutations Sweat Chloride Test Referral to the CF Center for guidance

Making a Diagnosis of CF

1) Clinical Syndrome

Unexplained chronic purulent lung disease Malabsorption syndrome

- 2) Laboratory demonstration of CFTR defect Sweat Chloride Test
 Nasal Potential Difference
- 3) Identification of genetic mutation

So What's New?

Treatments that target the biochemical defect that leads to clinical manifestations of disease.

Ivacaftor

Small molecule "potentiator" of CFTR Targets G551D mutation Improves chloride transport Dramatic results from RCT

Ramsey et al NEJM 2011;365:1663-1672

Ramsey et al NEJM 2011;365:1663-1672

Our Clinical Experience

18 adult patients with G551D mutations in Utah
2 have liver transplants without lung disease
Deferred treatment until lung disease starts
Protecting transplants from ivacaftor toxicities
Adherent patients
Better lungs, arrested disease progression, few admissions

Non-adherent patients

Non-sustained lung function improvement, progressive disease, more admissions

The Future

Ivacaftor/Lumacaftor combination therapy Targets F508del/F508del—70% of patients Press Release June 24, 2014 2.6-4.0 percentage point increase in FEV₁, $p \le 0.0004$ 30-39% drop in APE, $p \le 0.0014$ Well tolerated

Summary

CF shortens life by 40 years Patients die primarily of lung disease New treatments target the biochemical defect These are exciting times in CF!