SIGNIFICANCE OF LOW IMMUNOGLOBULINS

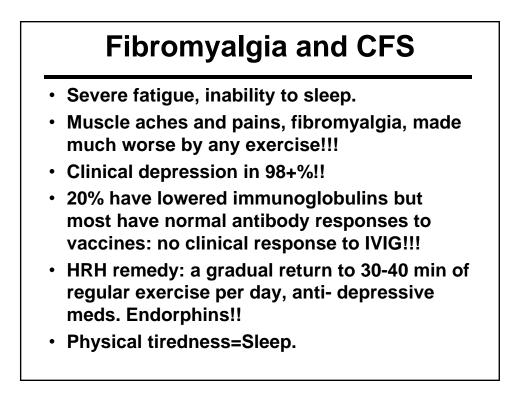
HARRY R. HILL, M.D. Professor of Pathology, Pediatrics and Medicine, Clinical Immunology University of Utah

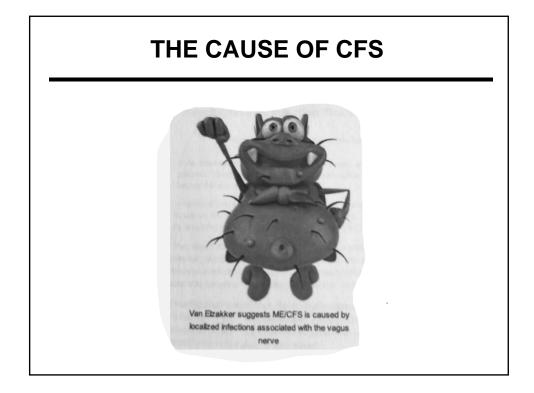
What to do about lowered immunoglobulins?

- Most frequent reason for referral to our adult Clinical Immunology/ Immunodeficiency clinic at U of U.
- Critical additional information required, however, that is seldom supplied initially and must be solicited.
- Referral form often returned to referring physician's office requesting such data; which may, or may not be returned.

Critically Needed Clinical Data in Immunodeficiencies

- Has the patient suffered from serious and recurrent infections?
- Pneumonia, usually lobar and requiring hospitalization and IV treatment. #??
- Chronic persisting diarrhea with weight loss.
- Sinusitis recurrent or chronic, draining otitis, bronchitis, conjunctivitis.


Additional Clinical Data


- Autoimmune disease of any type 10-20% in CVID – Get Igs first not later!!
- ? Treatment with prednisone, IV steroids, seizure medications, retuximab which can all significantly lower Ig concentrations and vaccine responses & effect T,B and NK cells. Even low doses of 10-20 mg prednisone but certainly with 20+ mg per day. Takes 2-6 months to resolve!! Retuximab years to resolve! PainMeds?

Secondary Antibody Deficiency in Steroid Treated Patients

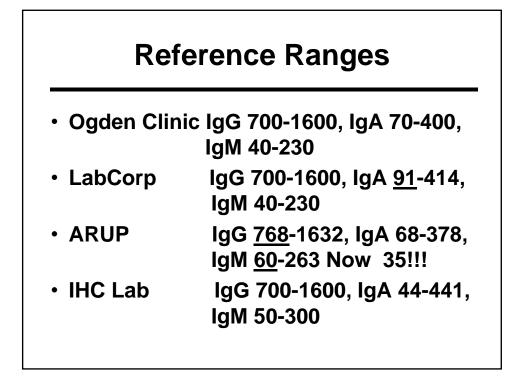
21 of 36 (60%) of Giant Cell Arteritis and Polymyalgia Rheumatica pts. treated with prednisone (5-50 mg/da.) developed AB deficiency 19/21 (90%) had low IgG; in 13 (62%) IgG only

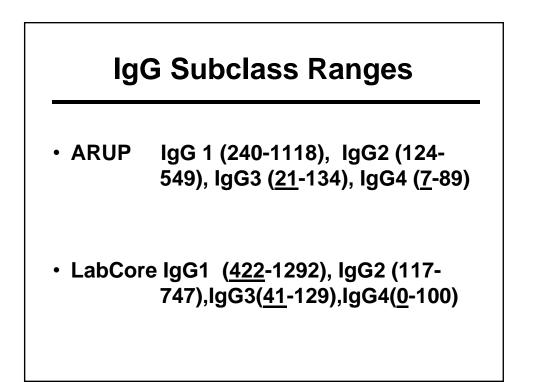
isotype involved; in 2/21 (10%) IgA was low also and in 4/21 (20%) IgM was low; six month decrease was seen in 8/21= 40%; low transitional and naïve B cells but normal IgM, IgA and IgM B memory cells. J Clin Immunol. 3/15/16

Exercise in Fibromyalgia and Chronic Fatigue Syndrome

White, P.D. et al. Comparison of adaptive pacing therapy, graded exercise therapy, and specialized medical care for chronic fatigue; a randomized trial. Lancet 377:823-6, 2011.

Wang, C., et al. A randomized trial of Tai Chi for fibromyalgia. New Eng. J. Med. 363:743-753, 2010.

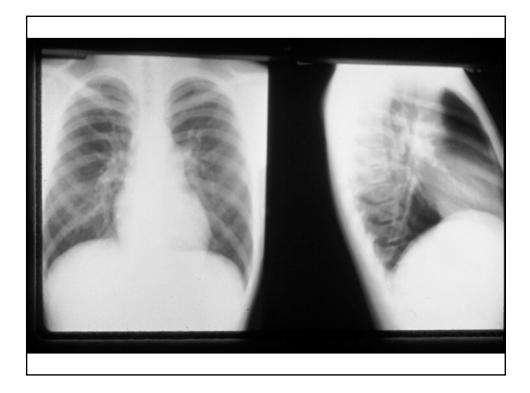

Wallman, K.E. et al. Randomised controlled trial of graded exercise in chronic fatigue syndrome. Med. J. Australia 180: 444-448, 2004


Laboratory Data Required to Dx Hypogammaglobulinemia

- <u>Repeat</u> IgG, IgA, IgM, IgG subclasses!! Different labs have different normal ranges! IgM 35 vs 60-70 – tons of referrals
- IFE in any >15 yo to rule out MGUS / Myeloma which can significantly lower lgs
- Pre and one month post S. pneumonia 23 valent vaccine, DT, Flu A&B vaccines, 2-4 fold or majority of serotypes (50-70%) > 1 ug ml (1.0 ug vs 1.3 ug makes no difference!!!!;) Daly, T.M., Hill, H.R.: Clin. Vaccine Immunol. 22:148-152, 2015..

Additional PRIOR/POST Referral Labs Needed

- T, B, and NK Cell determination T EXTENDED, LYMP PANEL 6, Memory B cell panel, LAM or Flow LAM.
- HIV Molecular Screen Usually high immunoglobulins but Reimer HIV patient had hypogammaglobulinemia
- In immunodeficiency or in infants must use molecular HIV tests not serology!!!! Can't make good antibody!

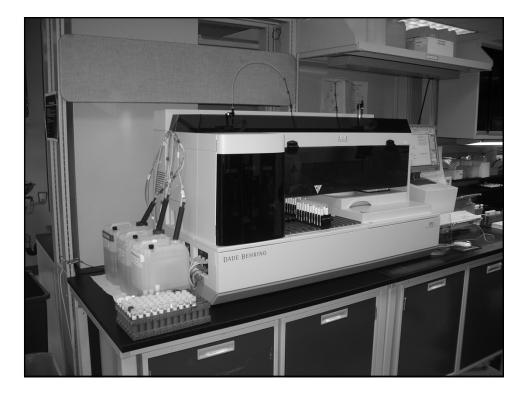


IgG Subclass Vaccine Responses

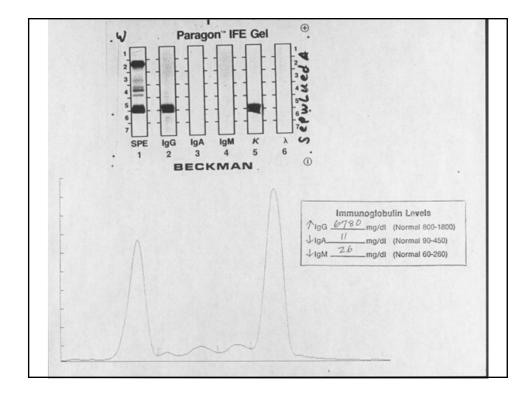
- IgG 1 Diphtheria, Tetanus, Conjugated
 H. flu b, Prevnar 7 and 13, Conj N. menin
- IgG 2 Pure polysaccharide Pneumovax, not Prevnar! N. meningititis nonconj
- IgG 3 Influenza A & B, Measles, Mumps, Rubella – No live vaccines!!!!!! VZV ??
- IgG 4 Cell sensitizing allergic antibody (IgA, Foods, Pollens?) Blocking IgG4 antibodies from desensitization! <u>LOW OK!</u>

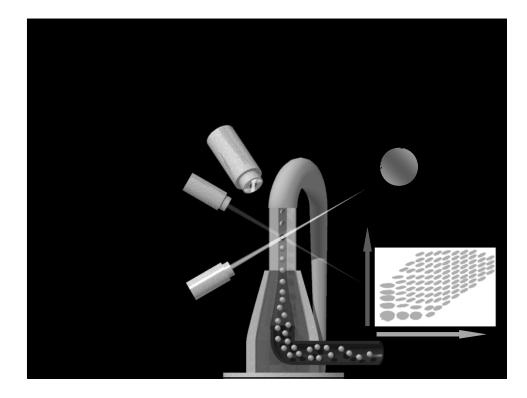
CASE	EHISTORY
<u>16 Y</u>	ear Old Male
6 mo – 8 yrs	Recurrent Otitis
8 yr – 16 yrs	Recurrent Sinusitis
12 -14 yrs	2-3 Episodes of Pneumonia

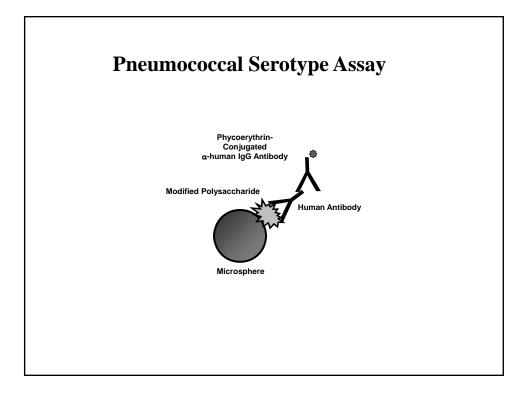
LABORATORY DATA • IgG - 190 mg% (750-2000) • IgA - 98 mg% (82-462) • IgM - 32 mg% (63-250) • Isohemagglutinins – Negative • AOS - Negative; Schick - Positive • Skin Tests - Positive • T Cells - 40% (40-75) • B Cells - 41% (10-25)

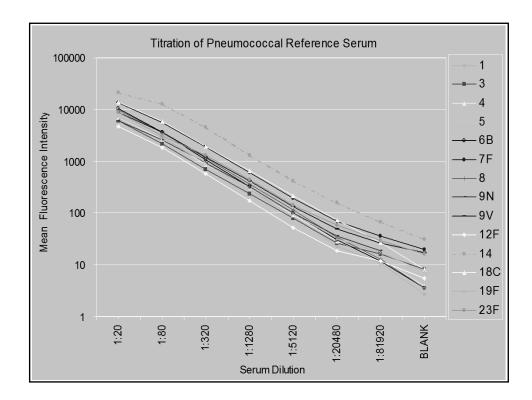

Chronic Persisting Giardiasis

56 yr male diagnosed with CVID at 14 On 15 gm SQ IgG q week so well but Chronic persisting diarrhea Dec-13Treated 25+ X metronidazole 1-4 wks, nitazoxanide 500mg BID x 3 weeks, tinidazole 500mg BID x 3weeks, quinacrine and alina (nitazoxanide) no response!!

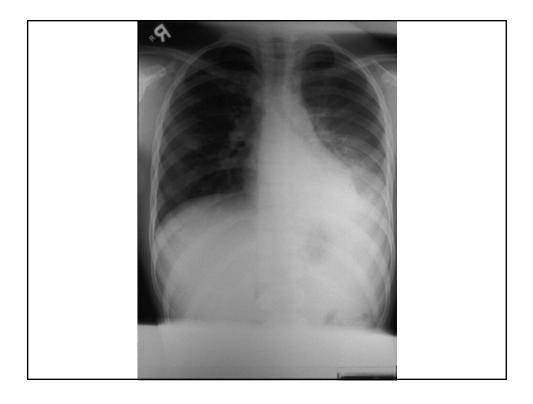

Finally after 3 years he got 3 WK of albendazole & alina he got better!!!???

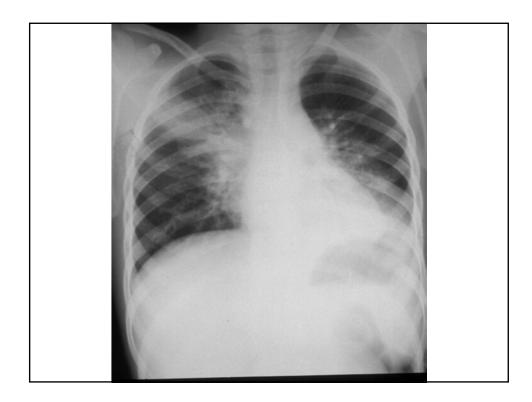





IMMUNOGLOBULIN G SUBCLASSES*

Characteristic	lgG1	lgG2	lgG3	lgG4
% in Serum	70	21	5	4
Half-Life Days	21	23	11	23
C1q Binding	++++	++	++++	-
Sensitize Cells	-	-	-	+
Polysaccharide	AB -	+++	-	-
Protein Ab (D,T)	++++	-	++	-
Viral Protein AB	++	-	++++	-
*Based on antige heavy chains.	nic and st	ructural d	ifferences of	of



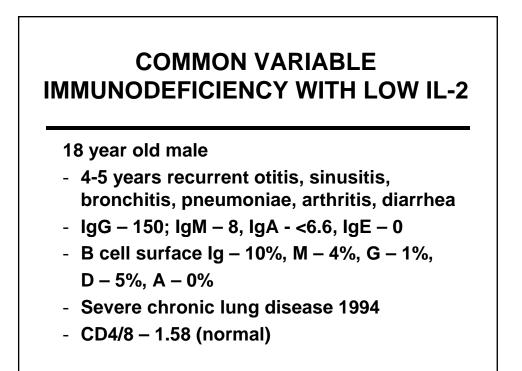

COMMON VARIABLE HYPOGAMMAGLOBULINEMIA

- Starts several years after birth
 - Common
 - Variable immunodeficiency of B and T cells
 - One-quarter develop malignancies
 - Clinical manifestations:
 - Sinopulmonary infections 90-100%
 - Chronic diarrhea/giardia 50-60%
 - Sepsis, meningitis
 - Bronchiectasis
 - Autoimmune disease/arthritis

PATIENT

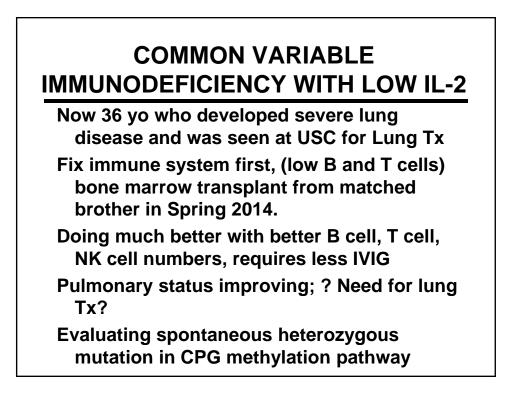
- 11 year old male with otitis media since birth
- Sinusitis, URIs
- Admitted Temperature 103°
- LLL infiltrate

LABORATORY VALUES • IgG – 80 IgA – 16 IgM – 44 • Rubella Titer – negative • Anti-A and B antibodies – 1:1 • B Lymphocytes – 23% • T Lymphocytes – 48% • Blood Culture – *H. influenzae b*

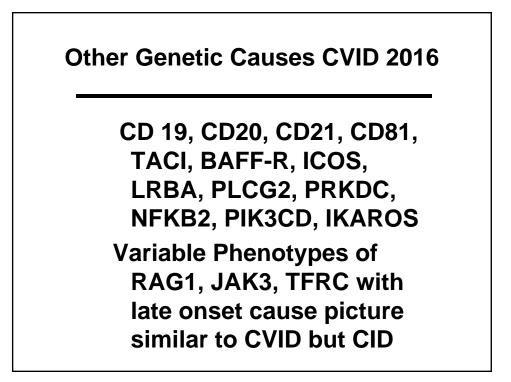

COMMON VARIABLE IMMUNODEFICIENCY

 Incidence: Australia: 	1:50,000 – 1:200,000 0.77/1000,000
 Onset: Average: 	3-90 years 2-3 decade – 25 years
• Diagnosis:	28 years

HYPOGAN	IMAGL	.OBULINEMI	4 *
INFECTION	%	INFECTION	%
Sinopulmonary	100	Empyema	4
Sinusitis	66	Meningitis	4
Otitis	32	Bacteremia	5
Pneumonia	86	Giardiasis	34
1-10 episodes	68	UTI	4
10 or more	18		
Bronchiectasis	28		


ASSOCIATED FINDINGS IN ACQUIRED HYPOGAMMAGLOBULINEMIA*

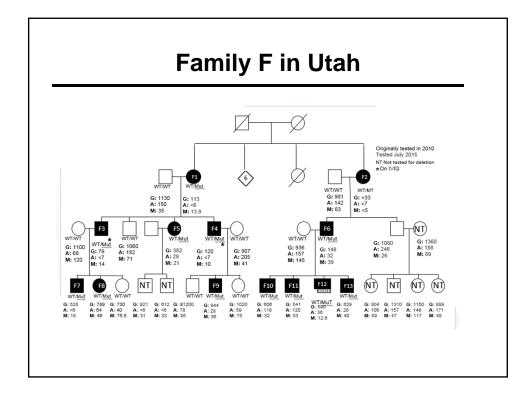
Diarrhea	60	Arthritis	8
Malabsorption	60	Allergy	40
Achlorhydria	53	Malignancy	24
Giardia	64	Stomach CA	
X-ray NLH	28	Lymphoma	
Splenomegaly	28	Thymoma	
Conjunctivitis	6	•	

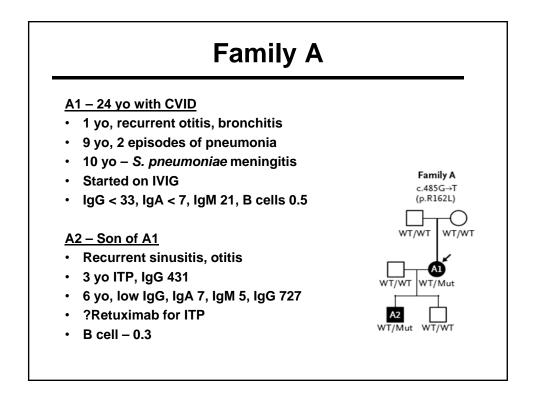

IL-2 PRODUCTION BY MMC OF CVI PATIENT (E.B.)

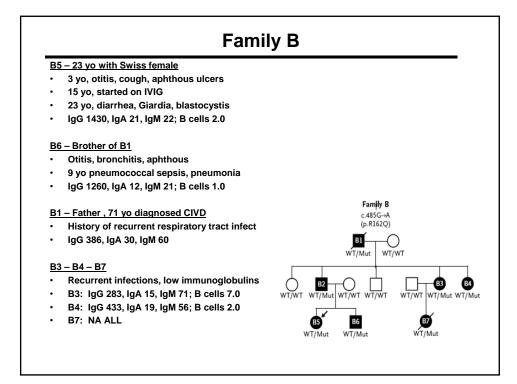
	Thymidine	L-2 Productior
<u>Stimulus</u>	Uptake	<u>% of Control</u>
PHA	49,188 N	2.7%
PWM	87,599 N	23.3%
Candida	105,581 N	3.5%
Tetanus	59,719 N	1.1%

Mongenic Models of CVID

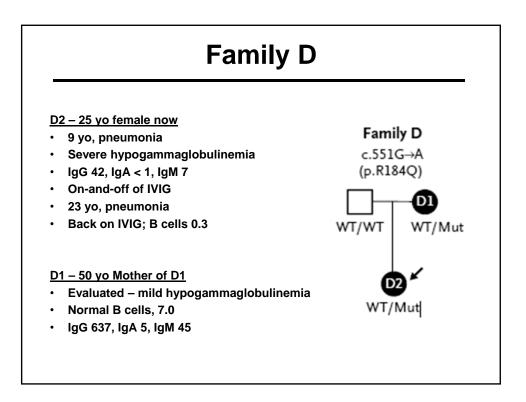
- Transmembrane activator and CAML interactor (TACI) +BAFF and APRIL induce IgA and antibody response to polysaccharides; 13 of 162 CVID patients - 15%
- Flow Cytometry & Sequencing
- Deficiency of Inducible Co-stimulator (ICOS) T-cell costimulator molecules on activated cells – induces IL-4,5,6,17, GM-CSF, TNFa, IFNg and superinduction of IL-10; AR in 4 families. Flow Cytometry – 2.5%
- CD 19 Deficiency AR disorder with decrease in BCR stimulation, poor AB responses but no autoimmunity or lymphoproliferation. – 2.5%
- BAFFR, B cell Activating Factor Receptor

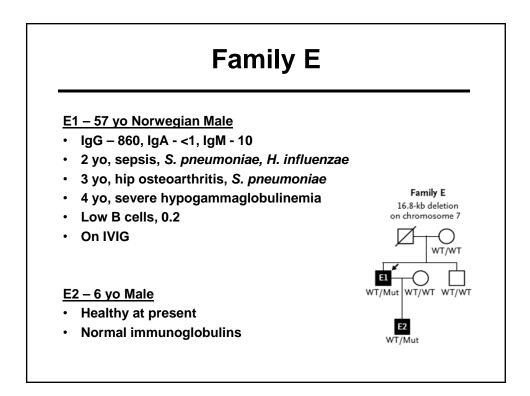



Family F in Utah


F2 – 70 year old female, IgG <7, IgA < 4, IgM < 2

- 29 yo recurrent pneumonias + sinusitis
- Started elsewhere on IgG (2ml/mo)
- Recurrent sinusitis, pneumonias
- 52 yo sinus surgery
- IVIG recommended, insurance didn't pay
- 57 yo seen at U of U undetectable IgG, IgA, & IgM
- No antibody responses started on IVIG
- 70 yo 2-3 sinusitis per year, one walking pneumonia, otherwise doing well; B cell 1.0

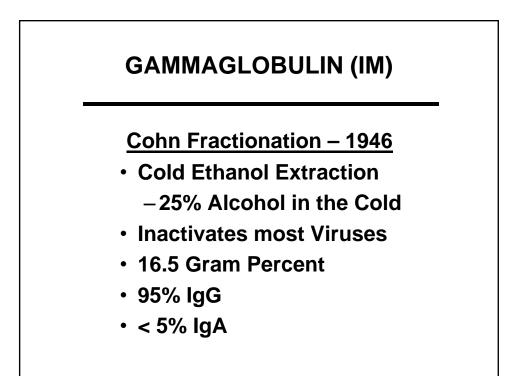

Family of F	1, Sister of F2
 F1 – Sister, 57 years old IgG 113, IgA <6, IgM 14 2-3 sinusitis per year but doing well Refuses IgG, B cell 0.8 F3 – Son of F1 Recurrent sinusitis, URIs 21 yo started on IVIG 40 yo on IVIG, IgA < 6, IgM 5 1-2 sinusitis per year, B cell 0.6 F4 – Son of F1, 24 yo Immunoglobulins very low 25 yo on IVIG, IgA < 6, IgM 7 1-2 sinusitis per year, B cell 0.1 	 <u>F5 – Daughter of F1, 31 yo</u> 1 walking pneumonia Immunoglobulins extremely low Refuses IgG, IgG 382, IgA 29, IgM 21, B cell 0.5 <u>F6 – Son of F2 – 42 yo</u> Immunoglobulins very low Refuses IgG IgG 148, IgA 3, IgM 39, B cell 5.5 3-5 sinusitis per year <u>F-12 – Son of F6</u> B cell acute leukemia at 6 yo Bone marrow transplant from F13 affected brother IgG 540, IgA 36, IgM 13



Family C	
<u>C1 – 32 yo female</u>	
• 2 episodes pneumococcal sepsis – ICU	
 30 yo pneumococcal meningitis 	
All immunoglobulins very low	
• 32 yo, started IVIG	
 IgG 887, IgA 73, IgM 11, B cells 1.0 	Family C c.500A→G
	(p.H167R)
<u>C2 – Daughter of C1, 13 yo now</u>	
9 months investigated and started on IVIG	WT/WT WT/WT
Poor antibody responses	
• IgG 1052, IgA 157, IgM 12, B cells 0.2	
	WT/WT WT/Mut
C3 – 2 nd Daughter of C1, 11 yo now	
 18 months old, 4 episodes otitis media 	2 3 ○
 Low IgG and IgM 	WT/Mut WT/Mut WT/WT
 4 yo, pneumonia on IVIG 	
 IgG 1030, IgA 12, IgM 6, B cells 0.4 	

Loss of B Cells in Patients with Heterozygous Mutation in IKAROS

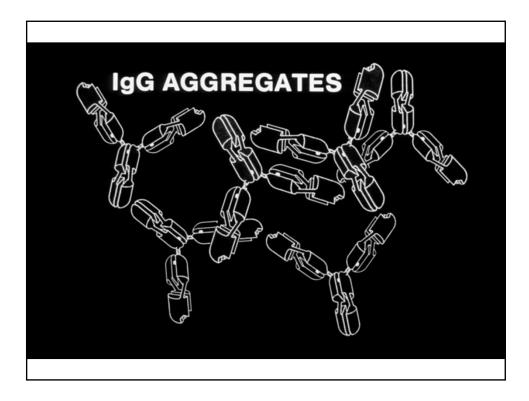
New England J. Med: 374:1032-1043, 2016


		Vorld: NIH, Rockefeller, vish, Paris, Zurich, Baylor,
 Six different r six families 	nutations/deleti	ons in 29 individuals from
Previously De	escribed Genes	in CVID (13)
1006		CATA2

TWEAK	GATA2
CTLA4	CXCL12
LRBA	NFKB1
GATA 2	(IKAROS)
	CTLA4 LRBA

THERAPY OF HYPOGAMMAGLOBULINEMIA

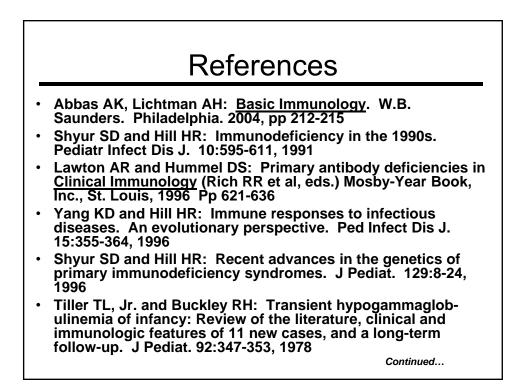
- Gammaglobulin IVIG or SQ IgG
- Intermittent antibiotics; prophylaxis TMX-s
- Pulmonary therapy
- Metronidazole etc
- Close follow-up malignancies, autoimmunity


- Pain at local site
- Aggregates into Vein
- Anaphylactic Reactions

 Usually IgG4 or IgE to IgA
- Blocks Active Immunity

					IgA Content
5% / 10%	Baxter	IVIg	636 m0sm/kg / 1250 m0sm/L	6.8 <u>+</u> 0.4	1μg/mL N/A
10%	Baxter	IVIg / SCIg	240-300 m0sm/kg	4.6 - 5.1	37 µg/mL
10%	Baxter	SClg	240-300 m0sm/kg	4.6 - 5.1	37 µg/mL
5%	Bio Products Lab	IVIg	460-500 m0sm/kg	4.6 - 5.1	<4 mcg/mL
10%	Biotest Pharm	IVIg	510 m0sm/kg	4.0 - 4.6	200 µg/mL
3% - 12%	CLS Behring	IVIg	192-1074 m0sm/kg	6.4 - 6.8	720 μg/mL
20% (200 mg/mL)	CLS Behring	SCIg	380 m0smol/kg	4.6 - 5.2	50 mcg/mL
10%	CLS Behring	IVIg	isotonic (320 m0smol/kg)	4.8	<u><</u> 25 mcg/mL
5% / 10%	Grifols	IVIg	240-370 m0sm/kg	5.0 - 6.0	<3 mcg/ml
10%	Grifols	IVIg / SCIg	258 m0sm/kg	4.0 - 4.5	46 µg/mL
10%	Kedrion	IVIg / SCIg	258 m0sm/kg	4.0 - 4.5	46 µg/mL
5%	Octapharma	IVIg	310-380 m0sm/kg	5.1 - 6.0	<100 µg/mL

INDICATIONS FOR IgG THERAPY


- Recurrent bacterial infections
- IgG < 200 mg 600 mg%; poor AB responses Pneumo, DPT, Flu
- IgG2 Def with Poor Pneumovax or Meningococcal Response, IgG3 and IgG4 seldom need IgG
- Specific AB Def with normal Igs and Subclasses but poor Pneumo & Polysaccharide AB!
- Severe immunosuppression with low IgG and Ab Retuximab, etc.

THERAPY FOR HYPOGAMMAGLOBULINEMIA

- IVIG 400-750 mg/kg q 3-4 weeks; SQ ¼ Monthly dose SQ q week, ½ q 2 wk, 1/1 q 4 wk; Keep trough IgG above 500-750 mg
- Treat acute infections promptly; ER: HRH-Card -Blood, Sputum C&S, CBC Diff, CRP, Chest X Ray, IV antibiotics and another dose IVIG immediately
- Occasional prophylactic antibiotics (HRH: TMX-S ONLY; no resistance in HIV prophylaxis; 98% MRSA still sens!)
- Pulmonary therapy
- Careful observations for malignancy

Common Variable Immunodeficiency

- Heterogeneous Group of Disorders
- Late onset 2 years to 100 years
- Hypogammaglobulinemia (usually > 2)
- Poor antibody responses to vaccination
- No exposures, immunosuppression, HIV
- Associated with autoimmunity, granuloma, malignancy, allergy

- Cunningham-Rundles C: Clinical and immunologic analyses of 103 patients with common variable immunodeficiency. J Clin Immunol. 9:22-33, 1989
- Sneller MC, Strobert W, Eisenstein E, Jaffe JS, Cunningham-Rundles C. (NIH Conference): New insights into common variable immunodeficiency. Annals of Internal Medicine 118:720-730, 1993
- Shapiro GG, Virant FS, Furukawa CT, Peirson WE, and Bierman CW: Immunologic defects in patients with refractory sinusitis. Pediatrics 87:311-316, 1991
- Ambrosino DM, Siber GR, Chilmonczyk BA, Jernberg JB and Finberg RW: An immunodeficiency characterized by impaired antibody responses to polysaccharides. New Engl J Med. 316:790-793
- Parmer P: <u>The Immune System</u>. Garland, New York, 2000, pp 252-254

REFERENCES
 Buchbinder D, Baker R, Lee YN, Ravell J, Zhang Y, McElwee J, Nugent D, Coonrod EM, Durtschi JD, Augustine NH, Voelkerding KV, Csomos K, Rosen L, Browne S, Walter JE, Notarangelo LD, Hill HR, Kumánovics A: Identification of patients with RAG mutations previously diagnosed with common variable immunodeficiency disorders. J Clin Immunol, 35:119-124, 2015, February
 Wirsum, C, et al. Secondary Antibody Deficiency in Glucocorticoid Therapy Clearly Differs from Primary Antibody Deficiency. J. Clin. Immunol, 36:406-12, 2016
 Chen, K., Coorod, E.M., Kumanovics, A., Franks, Z., Durtschi, J.D., Margraf, R.L., Wu, W. Heikal, N.M., Augustine, N.H., Ridge, P.G., Hill, H.R., Jorde, L.B., Weyrich, A.S., Zimmerman, G.A., Gundlapalli, A.V., Bohnsack, J. F., and Voelkerding, K.V.: Germline mutations in <i>NFKB2</i> implicate the noncanonical NF-kB pathway in the pathogenesis of immunodeficiency. Amer J Human Genet. 93:812-824, 2013, November

References

White, P.D. et al. Comparison of adaptive pacing therapy, graded exercise therapy, and specialized medical care for chronic fatigue; a randomized trial. Lancet 377:823-6, 2011.

Wang, C., et al. A randomized trial of Tai Chi for fibromyalgia. New Eng. J. Med. 363:743-753, 2010.

Wallman, K.E. et al. Randomised controlled trial of graded exercise in chronic fatigue syndrome. Med. J. Australia 180: 444-448, 2004

References

Daly, T.M., Hill, H.R.: Use and clinical interpretation of pneumococcal antibody measurements in the evaluation of humoral immune function. Clin. Vaccine Immunol. 22:148-152, 2015, February.

Kuehn, H.S., Boisson, B., Cunningham-Rundles, C., Reichenbach, J., Stray-Pedersen, A., Gelfand, E.W., Maffucci, P., Pierce, K.R., Abbott, J.K., Voelkerding, K.V., South, S.T., Augustine, N.H., Bush, J.S., Dolen, W.K., Wray, B.B., Itan, Y., Cobat, A., Sorte, H.S., Ganesan, S., Prader, S., Martins, T.B., Lawrence, M.G., Orange, J.S., Calvo, K.R., Niemela, J.E., Casanova, J.L., Fleisher, T.A., Hill, H.R., Kumánovics, A., Conley, M.E., Rosenzweig, S.D.: Heterozygous mutations in IKAROS in patients with progressive loss of B cells and hypogammaglobulinemia. New Engl. J. Med. 374:1032-1043, 2016.